WSF 1100

Flux para soldadura soluble en agua

outdated

Interflux ® WSF 1100 es un flux para soldadura sin VOC, absolutamente libre de haluros y con residuos solubles en agua de baja corrosión tras la soldadura. Los residuos de WSF 1100 deben limpiarse

WSF 1100 1L

Adecuado para

  • La soldadura selectiva es una tecnología de soldadura en la fabricación de productos electrónicos, que se utiliza normalmente para diseños de placas de circuito impreso con componentes principalmente SMD (dispositivos de montaje superficial) para soldadura por reflujo y sólo unos pocos componentes con orificios pasantes que no pueden pasar por el proceso de soldadura por reflujo. Suele tratarse de componentes térmicamente pesados como, por ejemplo, grandes transformadores o componentes térmicamente sensibles como, por ejemplo, condensadores de película, pantallas, conectores con cuerpos de plástico sensibles, relés, etc. El proceso de soldadura selectiva permite soldar estos componentes con orificios pasantes sin proteger ni afectar a los componentes SMD de la parte inferior de la placa de circuito impreso. El proceso de soldadura selectiva es muy flexible, ya que los parámetros pueden programarse para cada junta de soldadura por separado. Sin embargo, la principal limitación del proceso es el rendimiento o la capacidad de producción. Ésta puede mejorarse considerablemente si se utiliza una aleación de bajo punto de fusión que permita velocidades de soldadura más rápidas aumentando la capacidad de producción hasta un 100% (el doble). El proceso comienza con la aplicación de un flux líquido que desoxidará las superficies a soldar. Este flux se aplica mediante un microchorro o un flux de gota que dispara pequeñas gotas. La correcta calibración y programación de este flux es esencial para obtener buenos resultados de soldadura. Un error común es que el flux se aplique fuera de la zona de contacto de la boquilla de soldadura. Este flux permanecerá como un residuo de flux no consumido. En el caso de algunos flux y circuitos electrónicos sensibles, esto puede provocar un aumento de las corrientes de fuga y fallos sobre el terreno. Es aconsejable utilizar flux diseñados específicamente para la soldadura selectiva y que estén absolutamente libres de halógenos. La clasificación IPC para flux permite hasta 500ppm de halógenos para la clase de activación más baja, pero también estos 500ppm pueden ser críticos, por lo que absolutamente libre de halógenos es la palabra clave. El siguiente paso del proceso es el precalentamiento. Este paso del proceso evapora los disolventes del flux y proporciona calor para favorecer una buena humectación de la soldadura a través del orificio. La soldadura es un proceso térmico y se necesita una cierta cantidad de calor para realizar una unión soldada. Este calor es necesario tanto desde la parte inferior como desde la superior del componente de orificio pasante que se va a soldar. Este calor puede ser proporcionado por el precalentamiento y por la aleación líquida de soldadura. Algunas máquinas básicas no disponen de precalentamiento, tendrán que aplicar todo el calor a través de la aleación de soldadura líquida y, en general, utilizan temperaturas más altas para soldar. Una unidad de precalentamiento suele ser una unidad IR (infrarrojos) de onda corta que aplica el calor desde la parte inferior de la placa de circuito impreso. En la mayoría de los casos, el tiempo y la potencia del precalentamiento pueden programarse. Para placas y aplicaciones térmicamente pesadas, existen precalentadores por el lado superior. Suelen ser unidades de aire caliente (convección) en las que se puede programar la temperatura del aire. Cuando utilice esta unidad, es importante saber si hay componentes sensibles a la temperatura en la cara superior de la placa que puedan verse afectados por este precalentamiento. Existen varios sistemas para soldar. Aquel en el que la placa de circuito impreso permanece inmóvil y sólo se mueve la boquilla de soldadura es sin duda el preferido, ya que deben evitarse todas las fuerzas G cuando se solidifica la soldadura. En el paso de soldadura, se bombea una aleación de soldadura líquida a través de una boquilla de soldadura. Hay diferentes tamaños y formas de boquilla disponibles, boquillas anchas, boquillas pequeñas, boquillas largas y boquillas cortas. Dependiendo de los componentes que se vayan a soldar, se prefiere una a otra. En general, las boquillas más anchas y las más cortas proporcionan una mejor transferencia de calor y son las preferidas. Las boquillas más pequeñas y largas pueden utilizarse en situaciones de accesibilidad limitada. Se prefieren las boquillas no humectables a las no humectables, ya que proporcionan un flujo mucho más uniforme de la soldadura y unos resultados de soldadura más estables. Es aconsejable inundar la boquilla con nitrógeno para conseguir un flujo estable de la soldadura. Es preferible precalentar el nitrógeno porque, de lo contrario, enfriará la soldadura y la placa de circuito impreso. La optimización del programa de soldadura es esencial para optimizar el rendimiento/capacidad de la máquina de soldadura selectiva. Esto se centrará en encontrar los tiempos mínimos y las velocidades máximas que proporcionen una buena humectación de los orificios pasantes en combinación con la ausencia de puentes.

  • La soldadura por ola es un proceso de soldadura en masa utilizado en la fabricación de productos electrónicos para conectar componentes electrónicos a una placa de circuito impreso. El proceso se utiliza normalmente para componentes con orificios pasantes, pero también puede emplearse para soldar algunos componentes SMD (Suface Mount Device) que se pegan con un adhesivo SMT (Surface Mount Technology) a la cara inferior de la placa de circuito impreso antes de pasar por el proceso de soldadura en ola. El proceso de soldadura por ola consta de tres pasos principales : Fundido, precalentamiento y soldadura. Una cinta transportadora traslada las placas de circuito impreso a través de la máquina. Las placas de circuito impreso pueden montarse en un bastidor para evitar tener que ajustar la anchura del transportador para cada placa de circuito impreso diferente. El fundido se realiza normalmente mediante un fundidor de pulverización, pero también es posible el fundido por espuma y el fundido por chorro. El flux líquido se aplica desde la parte inferior de la placa de circuito impreso en la superficie y en los orificios de la canaleta. La finalidad del flux es desoxidar las superficies soldables de la placa de circuito impreso y los componentes y permitir que la aleación de soldadura líquida establezca una conexión intermetálica con dichas superficies dando lugar a una unión soldada. El precalentamiento tiene tres funciones principales. Es necesario evaporar el disolvente del flux, ya que pierde su función una vez aplicado y puede provocar defectos en la soldadura, como la formación de puentes y bolas de soldadura, cuando entra en contacto con la ola de soldadura en estado líquido. En general, los flux a base de agua necesitan más precalentamiento para evaporarse que los flux a base de alcohol. La segunda función del precalentamiento es limitar el choque térmico cuando la placa de circuito impreso entra en contacto con la soldadura líquida de la ola de soldadura. Esto puede ser importante para algunos componentes SMD y materiales de PCB. La tercera función del precalentamiento es favorecer la humectación de la soldadura a través de los orificios. Debido a la diferencia de temperatura entre la placa de circuito impreso y la soldadura líquida, ésta se enfriará al subir por el orificio pasante. Las placas y los componentes térmicamente pesados pueden extraer tanto calor de la soldadura líquida que ésta se enfría hasta el punto de solidificación, donde se congela antes de llegar a la parte superior. Este es un problema típico cuando se utilizan aleaciones de Sn(Ag)Cu. Un buen precalentamiento limita la diferencia de temperatura entre la placa de circuito impreso y la soldadura líquida y, por tanto, reduce el enfriamiento de la soldadura líquida al subir por el orificio pasante. Esto da más posibilidades de que la soldadura líquida llegue a la parte superior del agujero pasante. En un tercer paso, la placa de circuito impreso se pasa por una ola de soldadura. Se calienta un baño lleno de una aleación de soldadura hasta alcanzar la temperatura de soldadura. Esta temperatura de soldadura depende de la aleación de soldadura utilizada. La aleación líquida se bombea a través de canales hasta un formador de olas. Existen varios tipos de formadores de olas. Una configuración tradicional es una ola de virutas combinada con una ola principal laminar. La onda de chip inyecta la soldadura en la dirección del movimiento de la placa de circuito impreso y permite soldar la cara posterior de los componentes SMD que están protegidos del contacto de la onda en la onda laminar por el cuerpo del propio componente es. La ola laminar principal fluye hacia delante, pero la placa trasera ajustable está colocada de tal forma que la placa empujará la ola hacia atrás. Esto evitará que la placa de circuito impreso sea arrastrada por los productos de reacción de la soldadura. Un formador de olas que está ganando popularidad es el de olas Wörthmann, que combina la función de la ola de chip y la ola principal en una sola ola. Esta ola es más sensible al ajuste correcto y al puenteado. Debido a que las aleaciones de soldadura sin plomo necesitan altas temperaturas de trabajo y tienden a oxidarse bastante, muchos procesos de soldadura por ola se realizan en atmósfera de nitrógeno. Una nueva tendencia del mercado y el considerado por algunos como el futuro de la soldadura es el uso de una aleación de bajo punto de fusión, ej. LMPA-Q. LMPA-Q necesita menos temperatura y reduce la oxidación. También tiene algunas ventajas relacionadas con los costes, como la reducción del consumo eléctrico, la reducción del desgaste de los soportes y la no necesidad de nitrógeno. También reduce el impacto térmico sobre los componentes electrónicos y los materiales de las placas de circuito impreso.

Principales ventajas

  • La química de soldadura absolutamente libre de halógenos no contiene halógenos ni haluros añadidos intencionadamente. La clasificación IPC permite hasta 500ppm de halógenos para la clasificación más baja 'L0'. Los flux para soldadura, las pastas de soldadura y los alambres de soldadura de esta clase suelen denominarse 'libres de halógenos'. La química de soldadura absolutamente libre de halógenos va un paso más allá y no contiene este nivel 'permitido' de halógenos. Específicamente en combinación con aleaciones de soldadura sin plomo y en aplicaciones electrónicas sensibles, se ha informado de que estos bajos niveles de halógenos causan problemas de fiabilidad como, por ejemplo, corrientes de fuga demasiado altas. Los halógenos son elementos de la tabla periódica como el Cl, el Br, el F y el I. Tienen la propiedad física de que les gusta reaccionar. Esto es muy interesante desde el punto de vista de la química de la soldadura porque su función es limpiar los óxidos de las superficies a soldar. Y efectivamente los halógenos realizan muy bien ese trabajo, incluso superficies difíciles de limpiar como el latón, Zn, Ni,...o superficies muy oxidadas o degradadas de I-Sn y OSP (Protección Orgánica de Superficies) pueden soldarse con la ayuda de flux halogenados. Los halógenos proporcionan una gran ventana de proceso en la soldabilidad. Sin embargo, el problema es que los residuos y productos de reacción de los flux halogenados pueden ser problemáticos para los circuitos electrónicos. Suelen tener una alta higroscopicidad y una elevada solubilidad en agua y suponen un mayor riesgo de electromigración y de altas corrientes de fuga. Esto supone un alto riesgo de mal funcionamiento del circuito electrónico. Específicamente con las aleaciones de soldadura sin plomo hay más informes de que incluso los niveles más pequeños de halógenos pueden ser problemáticos para las aplicaciones electrónicas sensibles. Las aplicaciones electrónicas sensibles suelen ser circuitos de alta resistencia, circuitos de medición, circuitos de alta frecuencia, sensores,... Por eso la tendencia es alejarse de los halógenos en la química de la soldadura en la fabricación de productos electrónicos. En general, cuando la soldabilidad de las superficies a soldar del componente y de la placa de circuito impreso (PCB) son normales, no hay necesidad de estos halógenos. Los productos de soldadura absolutamente libres de halógenos diseñados de forma inteligente proporcionarán una ventana de proceso lo suficientemente amplia como para limpiar las superficies y obtener un buen resultado de soldadura y esto en combinación con residuos de alta fiabilidad.

  • El aumento de la actividad de un producto de soldadura puede ser necesario para superficies con mala soldabilidad como, por ejemplo, latón, Ni desprotegido, Ag oxidado, Cu que no fue micrograbado,...o superficies con soldabilidad degradada como, por ejemplo, I-Sn que se almacenó demasiado tiempo o vio demasiado calor, Cu-OSP que pasó un perfil de reflujo sin plomo hace demasiado tiempo,...Una indicación de la actividad de un producto de soldadura es su clasificación. La clasificación más popular y aceptada para los productos de soldadura es la IPC. L0 es la clase de activación más baja y la estándar, debería ser adecuada para todas las superficies convencionales de calidad normal utilizadas en el montaje de componentes electrónicos. L1 es la clase de activación más baja pero con un contenido de halógenos de hasta el 0,5%. En la mayoría de los casos, estos halógenos ya darán un mejor resultado en muchas de las superficies anteriormente mencionadas con una soldabilidad deficiente o degradada. Las otras clases de activación son M0 y M1 y H0 y H1. M significa Media y H Alta. 0 significa hasta 500 ppm de halógenos tanto para M0 como para H0. 1 significa hasta un 2% de halógenos para la clase M1 y para H1 se permite más de un 2% de halógenos. Los productos de soldadura de la clase H deben tratarse con cuidado, ya que pueden ser corrosivos y deben limpiarse, preferiblemente en un proceso de limpieza automatizado.

  • La capacidad de humectación de un producto de soldadura se refiere a lo bien que la activación del producto de soldadura es capaz de limpiar los óxidos de las superficies a soldar. Es necesario eliminar estos óxidos para permitir que la aleación de soldadura líquida penetre en las superficies a soldar. Cuando la calidad de las superficies a soldar en la fabricación de productos electrónicos es normal, es posible utilizar un producto de soldadura de la clase de activación más baja, L0. En general, sólo cuando las superficies están degradadas o cuando el metal base es difícil de soldar, se utiliza un producto con una mayor actividad o una mayor capacidad de humectación. Tales superficies pueden ser, por ejemplo químico Sn que se aplicó demasiado fino o se almacenó demasiado tiempo antes de soldar, componentes, o placas de circuito impreso que se almacenaron demasiado tiempo en condiciones de calor y humedad y están muy oxidados, Ni no protegido, latón,... Otra posible razón para utilizar un producto con mayor capacidad de humectación es la facilidad de uso. Por ejemplo, soldadura de hilo con mayor capacidad de humectación en general proporcionará una soldadura más rápida y no es tan sensible a la manipulación correcta necesaria para producir una buena unión soldada a mano. En operaciones de soldadura manual de gran volumen para unidades electrónicas que no tienen unos requisitos tan elevados en cuanto a los residuos tras la soldadura, se suelen utilizar soldadura de hilo con mayor capacidad de humectación. También para la soldadura robotizada y la soldadura láser se suelen utilizar soldadura de hilo con mayor capacidad de humectación porque, en general, tienen mejores propiedades para estos procesos.

  • RoHS son las siglas en inglés de Restricción de Sustancias Peligrosas. Se trata de una directiva europea: Directiva 2002/95/CE. Restringe el uso de algunas sustancias que se consideran Sustancias Extremadamente Preocupantes (SHVC) en aparatos eléctricos y electrónicos para el territorio de la Unión Europea. A continuación encontrará un listado de estas sustancias: Tenga en cuenta que esta información está sujeta a cambios. Consulte siempre la página web de la Unión Europea para obtener la información más reciente: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1. Cadmio y compuestos de cadmio 2. Plomo y compuestos de plomo 3. Mercurio y compuestos de mercurio(Hg) 4. Compuestos de cromo hexavalente(Cr) 5. Bifenilos policlorados (PCB) 6. Naftalenos policlorados (PCN) 7. Parafinas cloradas (PC) 8. Otros compuestos orgánicos clorados 9. Bifenilos polibromados (PBB) 10. Difeniléteres polibromados (PBDE) 11. Otros compuestos orgánicos bromados 12. Compuestos orgánicos de estaño (compuestos de tributilestaño, compuestos de trifenilestaño) 13. Amianto 14. Compuestos azoicos 15. Formaldehído 16. Cloruro de polivinilo (PVC) y mezclas de PVC 17. Éster difenílico decabromado (a partir del 1/7/08) 18. PFOS : Directiva 76/769/CEE de la UE (no se permite en una concentración igual o superior al 0,0005% en masa) 19. Bis(2-etilhexil) ftalato (DEHP) 20. Butilbencilftalato (BBP) 21. Dibutilftalato (DBP) 22. Diisobutilftalato 23. Deca éster difenílico bromado (en equipos eléctricos y electrónicos) Otros países fuera de la Unión Europea han introducido su propia legislación RoHS, que en gran medida es muy similar a la europea.

  • En 2006 la legislación restringió el uso de plomo (Pb) en la fabricación de productos electrónicos. Sin embargo, se formularon muchas exenciones, principalmente debido a la falta de experiencia a largo plazo sobre la fiabilidad de las aleaciones sin plomo. Esto dio lugar a que muchos centros de fabricación de productos electrónicos utilizaran tanto aleaciones sin plomo como aleaciones con Pb en sus procesos de soldadura. Para la soldadura por ola y selectiva, muchos fabricantes de electrónica deseaban utilizar la misma química de flux con ambos tipos de aleaciones de soldadura. Esto se debía a que estaban familiarizados con la química en términos de fiabilidad. Además, introducir nuevos materiales en una fabricación puede requerir mucho papeleo, capacidad de almacenamiento extra, etc... Aunque las aleaciones sin plomo requieren temperaturas de funcionamiento más altas que las aleaciones que contienen Pb, aumentando la cantidad de flux aplicado en muchos casos se puede utilizar la misma química de flux para ambas aleaciones. Sin embargo, en algunos casos, normalmente cuando se sueldan unidades electrónicas con una masa térmica elevada, no es posible utilizar el mismo flux para ambas aleaciones de soldadura. En estos casos, suele ser necesario un flux con mayor contenido en sólidos. Existen muchos alambres y pastas de soldadura con el mismo flux tanto para aleaciones sin plomo como para aleaciones SnPb.

  • COV son las siglas de Compuestos Orgánicos Volátiles, VOC en inglés. En general, los COV se consideran no respetuosos con el medio ambiente. Algunos países o regiones restringen las emisiones de COV mediante la legislación. Los alcoholes son COV. En algunos casos, el uso de decapantes de soldadura a base de alcohol en el proceso de soldadura por ola de una fabricación electrónica puede dar problemas con las restricciones de emisión de COV. Una solución sencilla en tal caso es utilizar un flux de soldadura sin COV. En general, se trata de un flux de base acuosa. Además de la eliminación de las emisiones de COV, los flux de base acuosa tienen más ventajas que los de base alcohólica, como un menor consumo, la ausencia de riesgo de incendio, la no necesidad de transporte y almacenamiento especiales, un menor olor en la zona de producción, ... Sin embargo, los flux de base acuosa en general son más sensibles a los ajustes correctos del pulverizador de flux para conseguir una buena aplicación del flux en la superficie y en los orificios pasantes. En algunos casos también pueden requerir un poco más de precalentamiento para conseguir la evaporación del agua.