Tip Tinner

estañador de puntas de soldador

Interflux® Tip Tinner limpia y reaviva las puntas de los soldadores. El uso regular de Tip Tinner puede prolongar sustancialmente la vida útil de las puntas de soldador.

Tip Tinner 8

Adecuado para

  • La soldadura manual es una tecnología de fabricación electrónica que utiliza un (des)soldador manual para realizar una unión soldada o desoldar un componente de una placa de circuito impreso. El proceso se utiliza sobre todo en retrabajos y reparaciones, pero también para soldar componentes individuales que han quedado fuera del proceso de soldadura en masa (soldadura por reflujo o por ola). Esto puede deberse a la disponibilidad o a la sensibilidad a la temperatura de estos componentes. El soldador suele formar parte de una estación de soldadura que dispone de una fuente de alimentación que controla la temperatura del soldador. Esta temperatura puede ajustarse en función de la aleación de soldadura utilizada y suele situarse entre 320°C-390°C. El soldador dispone de una punta de soldar intercambiable que puede elegirse en función del componente que se vaya a soldar. Para una transferencia de calor óptima es recomendable utilizar la punta de soldar más grande posible, sobre todo cuando se sueldan componentes con orificios pasantes (de gran masa térmica). Para soldar componentes y placas térmicamente pesados, la potencia de la estación de soldadura también es importante para mantener la temperatura ajustada de la punta de soldar. En el retrabajo y la reparación, cambiar la punta de soldar para cada componente diferente no es realista y sólo se utilizan unas pocas puntas de soldar. Existen puntas de soldar para soldar varias juntas de soldadura de montaje superficial seguidas como, por ejemplo, para los SOIC (Small Outline Integrated Circuit) y los QFP (Quad Flat Package). Para favorecer la transferencia de calor y el flujo de la soldadura, las puntas de soldar son humectables, lo que significa que interactúan con la aleación de soldadura. Durante la soldadura, estas puntas se oxidan y pueden perder su humectabilidad, lo que obstruirá la transferencia de calor. Esto puede evitarse limpiando la punta de soldadura. Al cabo de un tiempo, las puntas de soldadura también se desgastarán y será necesario sustituirlas. La vida útil de la punta de soldar puede optimizarse evitando el uso de limpiadores de puntas de soldar abrasivos o agresivos o evitando limpiar mecánicamente la punta de soldar con, por ejemplo, lana de acero o papel de lija. Es aconsejable utilizar un limpiador de puntas absolutamente libre de halógenos. En la soldadura manual, la soldadura para la unión soldada suele suministrarse mediante un alambre de soldadura. Un alambre de soldadura está disponible en varios diámetros y varias aleaciones, y lleva en su interior una cantidad determinada de un cierto tipo de flux. La aleación suele ser la misma o una aleación similar a la del proceso de soldadura a granel (reflujo, ola o soldadura selectiva). El diámetro se elige en función del tamaño de la unión soldada. El contenido de flux en el hilo de soldadura suele venir determinado por la masa térmica del componente y la placa que se va a soldar. Las juntas de soldadura con orificios pasantes (de gran masa térmica) necesitan más flux. Un mayor contenido de flux también dará más residuos visuales de flux tras la soldadura. A veces se necesita más flux, que en la mayoría de los casos es un flux líquido de retrabajo y reparación, pero también puede ser un flux en gel. El tipo de flux/alambre de soldadura viene determinado por la soldabilidad de las superficies a soldar. Con la soldabilidad normal de los componentes electrónicos y las placas de circuito impreso es aconsejable un tipo de flux/alambre de soldadura 'L0' absolutamente libre de halógenos. En general, una operación de soldadura manual se realiza así: Ajuste la temperatura de la punta de soldar en función de la aleación de soldadura utilizada. Para las aleaciones sin plomo, la temperatura de trabajo aconsejada se sitúa entre 320°C y 390°C. Para metales más densos como el níquel, la temperatura puede elevarse a 420°C. Es importante utilizar una buena estación de soldadura. Utilice una estación de soldadura con un tiempo de respuesta corto y con potencia suficiente para su aplicación. Elija la punta de soldar correcta: para reducir la resistencia térmica, es importante crear una zona de contacto lo más amplia posible con las superficies a soldar. Caliente ambas superficies simultáneamente. Toque ligeramente con el hilo de soldadura, el punto donde se encuentran la punta de soldar y las superficies a soldar (la pequeña cantidad de soldadura asegura una disminución drástica de la resistencia térmica). Añada posteriormente sin interrupción, la cantidad correcta de soldadura cerca de la punta de soldar sin tocar la punta. Esto reducirá el riesgo de salpicaduras de flux y el consumo prematuro del mismo.

  • El retrabajo y la reparación en una unidad electrónica pueden realizarse en unidades electrónicas defectuosas que vuelven del campo, pero también pueden ser necesarios en un entorno de producción electrónica para corregir defectos en los procesos de montaje y soldadura. Las acciones típicas de retrabajo y reparación implican la eliminación de puentes de soldadura, la adición de soldadura a componentes mal rellenos de agujeros pasantes o la adición de la soldadura que falta, la sustitución de componentes erróneos, la sustitución de componentes colocados en la dirección equivocada, la sustitución de componentes que presentan defectos relacionados con las altas temperaturas de soldadura en los procesos, la adición de componentes que se dejaron fuera del proceso debido, por ejemplo, a su disponibilidad o a su sensibilidad a la temperatura. La identificación de estos defectos puede realizarse mediante inspección visual, mediante AOI (inspección óptica automatizada), mediante ICT (pruebas en circuito, pruebas eléctricas) o mediante CAT (pruebas asistidas por ordenador, pruebas funcionales). Muchas operaciones de reparación pueden realizarse con una estación de soldadura manual que dispone de un (des)soldador con ajuste de temperatura. La soldadura se añade mediante un hilo de soldadura que está disponible en varias aleaciones y diámetros y que contiene un flux en su interior. En algunos casos se utiliza un flux líquido de reparación y/o un flux en gel para facilitar el proceso de soldadura manual. Para componentes de mayor tamaño, como BGA (Ball Grid Array), LGA (Land Grid Array) QFN (Quad Flat No Leads), QFP (Quad Flat Package), PLCC (Plastic Leaded Chip Carrier),... puede utilizarse una unidad de reparación que simula un perfil de reflujo. Estas unidades de reparación están disponibles en diferentes tamaños y con distintas opciones. En la mayoría de los casos contienen un precalentamiento por la parte inferior que suele ser IR (Infrarrojos). Este precalentamiento puede controlarse mediante un termopar que se coloca en la placa de circuito impreso. Algunas unidades disponen de una unidad pick and place que facilita la correcta colocación del componente en la placa de circuito impreso. La unidad de calentamiento suele ser de aire caliente o de infrarrojos, o una combinación de ambos. Con la ayuda de termopares en la PCB, el calentador se controla para crear el perfil de soldadura deseado. En algunos casos, el reto consiste en llevar el componente a las temperaturas de soldadura sin refundir los componentes adyacentes. Esto puede resultar difícil cuando el componente a reparar es grande y tiene componentes pequeños cerca. Para los BGA con bolas de una aleación de soldadura, se puede utilizar un flux en gel o un flux líquido con mayor contenido en sólidos. En este caso, la soldadura para la unión soldada la proporcionan las bolas. Pero también es posible el uso de una pasta de soldadura. La pasta de soldadura puede imprimirse en los conductores del componente o en la placa de circuito impreso. Esto requiere una plantilla diferente para cada componente. Los BGA también pueden sumergirse en una pasta de soldadura de inmersión especial que primero se imprime en una capa con una plantilla con una gran apertura y un grosor determinado. Para los QFN, LGA QFN, QFP, PLCC,... es necesario añadir soldadura para hacer una unión soldada. En algunos casos, los QFP pueden soldarse a mano, pero la técnica requiere experiencia, por lo que es preferible utilizar una unidad de retrabajo. Los QFP y PLCC tienen cables y pueden utilizarse con una pasta de soldadura por inmersión. Los QFN, LGA's QFN que no tienen cables sino contactos planos no pueden utilizarse con una pasta de soldar por inmersión porque sus cuerpos entrarían en contacto con la pasta de soldar. En este caso, la pasta de soldadura debe imprimirse en los contactos o en la placa de circuito impreso. En general, es más fácil imprimir la pasta de soldadura en el componente que en la placa de circuito impreso, sobre todo cuando se utiliza una plantilla denominada 3D que tiene una cavidad donde se fija la posición del componente. La sustitución de componentes con orificios pasantes puede realizarse con una estación de (des)soldadura manual. Suele hacerse colocando una punta desoldadora hueca sobre la parte inferior del cable del componente que puede succionar la soldadura del orificio. La punta desoldadora tendrá que calentar toda la soldadura del orificio pasante hasta que esté totalmente líquida. En el caso de placas térmicamente pesadas, esto puede resultar muy difícil. En este caso, también se puede calentar la parte superior de la junta de soldadura con un soldador. Otra posibilidad es precalentar la placa antes de la operación de desoldadura. La soldadura del componente con orificio pasante suele realizarse con un hilo de soldadura que contiene más flux o, alternativamente, se añade flux de repaso adicional en el orificio pasante y/o en el cable del componente. En el caso de conectores de orificio pasante más grandes, puede utilizarse un baño de soldadura por inmersión para extraer el conector. Si la accesibilidad en la placa de circuito impreso es limitada, puede utilizarse una boquilla de tamaño adaptado al conector. Se recomienda el uso de flux en esta operación.

Principales ventajas

  • Aumenta sustancialmente la vida útil de las puntas

  • No abrasivo

  • La química de soldadura absolutamente libre de halógenos no contiene halógenos ni haluros añadidos intencionadamente. La clasificación IPC permite hasta 500ppm de halógenos para la clasificación más baja 'L0'. Los flux para soldadura, las pastas de soldadura y los alambres de soldadura de esta clase suelen denominarse 'libres de halógenos'. La química de soldadura absolutamente libre de halógenos va un paso más allá y no contiene este nivel 'permitido' de halógenos. Específicamente en combinación con aleaciones de soldadura sin plomo y en aplicaciones electrónicas sensibles, se ha informado de que estos bajos niveles de halógenos causan problemas de fiabilidad como, por ejemplo, corrientes de fuga demasiado altas. Los halógenos son elementos de la tabla periódica como el Cl, el Br, el F y el I. Tienen la propiedad física de que les gusta reaccionar. Esto es muy interesante desde el punto de vista de la química de la soldadura porque su función es limpiar los óxidos de las superficies a soldar. Y efectivamente los halógenos realizan muy bien ese trabajo, incluso superficies difíciles de limpiar como el latón, Zn, Ni,...o superficies muy oxidadas o degradadas de I-Sn y OSP (Protección Orgánica de Superficies) pueden soldarse con la ayuda de flux halogenados. Los halógenos proporcionan una gran ventana de proceso en la soldabilidad. Sin embargo, el problema es que los residuos y productos de reacción de los flux halogenados pueden ser problemáticos para los circuitos electrónicos. Suelen tener una alta higroscopicidad y una elevada solubilidad en agua y suponen un mayor riesgo de electromigración y de altas corrientes de fuga. Esto supone un alto riesgo de mal funcionamiento del circuito electrónico. Específicamente con las aleaciones de soldadura sin plomo hay más informes de que incluso los niveles más pequeños de halógenos pueden ser problemáticos para las aplicaciones electrónicas sensibles. Las aplicaciones electrónicas sensibles suelen ser circuitos de alta resistencia, circuitos de medición, circuitos de alta frecuencia, sensores,... Por eso la tendencia es alejarse de los halógenos en la química de la soldadura en la fabricación de productos electrónicos. En general, cuando la soldabilidad de las superficies a soldar del componente y de la placa de circuito impreso (PCB) son normales, no hay necesidad de estos halógenos. Los productos de soldadura absolutamente libres de halógenos diseñados de forma inteligente proporcionarán una ventana de proceso lo suficientemente amplia como para limpiar las superficies y obtener un buen resultado de soldadura y esto en combinación con residuos de alta fiabilidad.

  • En 2006 la legislación restringió el uso de plomo (Pb) en la fabricación de productos electrónicos. Sin embargo, se formularon muchas exenciones, principalmente debido a la falta de experiencia a largo plazo sobre la fiabilidad de las aleaciones sin plomo. Esto dio lugar a que muchos centros de fabricación de productos electrónicos utilizaran tanto aleaciones sin plomo como aleaciones con Pb en sus procesos de soldadura. Para la soldadura por ola y selectiva, muchos fabricantes de electrónica deseaban utilizar la misma química de flux con ambos tipos de aleaciones de soldadura. Esto se debía a que estaban familiarizados con la química en términos de fiabilidad. Además, introducir nuevos materiales en una fabricación puede requerir mucho papeleo, capacidad de almacenamiento extra, etc... Aunque las aleaciones sin plomo requieren temperaturas de funcionamiento más altas que las aleaciones que contienen Pb, aumentando la cantidad de flux aplicado en muchos casos se puede utilizar la misma química de flux para ambas aleaciones. Sin embargo, en algunos casos, normalmente cuando se sueldan unidades electrónicas con una masa térmica elevada, no es posible utilizar el mismo flux para ambas aleaciones de soldadura. En estos casos, suele ser necesario un flux con mayor contenido en sólidos. Existen muchos alambres y pastas de soldadura con el mismo flux tanto para aleaciones sin plomo como para aleaciones SnPb.

  • RoHS son las siglas en inglés de Restricción de Sustancias Peligrosas. Se trata de una directiva europea: Directiva 2002/95/CE. Restringe el uso de algunas sustancias que se consideran Sustancias Extremadamente Preocupantes (SHVC) en aparatos eléctricos y electrónicos para el territorio de la Unión Europea. A continuación encontrará un listado de estas sustancias: Tenga en cuenta que esta información está sujeta a cambios. Consulte siempre la página web de la Unión Europea para obtener la información más reciente: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1. Cadmio y compuestos de cadmio 2. Plomo y compuestos de plomo 3. Mercurio y compuestos de mercurio(Hg) 4. Compuestos de cromo hexavalente(Cr) 5. Bifenilos policlorados (PCB) 6. Naftalenos policlorados (PCN) 7. Parafinas cloradas (PC) 8. Otros compuestos orgánicos clorados 9. Bifenilos polibromados (PBB) 10. Difeniléteres polibromados (PBDE) 11. Otros compuestos orgánicos bromados 12. Compuestos orgánicos de estaño (compuestos de tributilestaño, compuestos de trifenilestaño) 13. Amianto 14. Compuestos azoicos 15. Formaldehído 16. Cloruro de polivinilo (PVC) y mezclas de PVC 17. Éster difenílico decabromado (a partir del 1/7/08) 18. PFOS : Directiva 76/769/CEE de la UE (no se permite en una concentración igual o superior al 0,0005% en masa) 19. Bis(2-etilhexil) ftalato (DEHP) 20. Butilbencilftalato (BBP) 21. Dibutilftalato (DBP) 22. Diisobutilftalato 23. Deca éster difenílico bromado (en equipos eléctricos y electrónicos) Otros países fuera de la Unión Europea han introducido su propia legislación RoHS, que en gran medida es muy similar a la europea.

Documentos