TS 33R

Flux para soldadura a base de colofonia

sustituido por

TS 33R been replaced by .

For those still interested:

Interflux® TS 33R is a no-clean rosin based soldering flux with a wide process window. TS33R can reduce solder balling on solder masks that are sensitive to solder balling.

TS 33R 10L angle

Adecuado para

  • La soldadura por ola es un proceso de soldadura en masa utilizado en la fabricación de productos electrónicos para conectar componentes electrónicos a una placa de circuito impreso. El proceso se utiliza normalmente para componentes con orificios pasantes, pero también puede emplearse para soldar algunos componentes SMD (Suface Mount Device) que se pegan con un adhesivo SMT (Surface Mount Technology) a la cara inferior de la placa de circuito impreso antes de pasar por el proceso de soldadura en ola. El proceso de soldadura por ola consta de tres pasos principales : Fundido, precalentamiento y soldadura. Una cinta transportadora traslada las placas de circuito impreso a través de la máquina. Las placas de circuito impreso pueden montarse en un bastidor para evitar tener que ajustar la anchura del transportador para cada placa de circuito impreso diferente. El fundido se realiza normalmente mediante un fundidor de pulverización, pero también es posible el fundido por espuma y el fundido por chorro. El flux líquido se aplica desde la parte inferior de la placa de circuito impreso en la superficie y en los orificios de la canaleta. La finalidad del flux es desoxidar las superficies soldables de la placa de circuito impreso y los componentes y permitir que la aleación de soldadura líquida establezca una conexión intermetálica con dichas superficies dando lugar a una unión soldada. El precalentamiento tiene tres funciones principales. Es necesario evaporar el disolvente del flux, ya que pierde su función una vez aplicado y puede provocar defectos en la soldadura, como la formación de puentes y bolas de soldadura, cuando entra en contacto con la ola de soldadura en estado líquido. En general, los flux a base de agua necesitan más precalentamiento para evaporarse que los flux a base de alcohol. La segunda función del precalentamiento es limitar el choque térmico cuando la placa de circuito impreso entra en contacto con la soldadura líquida de la ola de soldadura. Esto puede ser importante para algunos componentes SMD y materiales de PCB. La tercera función del precalentamiento es favorecer la humectación de la soldadura a través de los orificios. Debido a la diferencia de temperatura entre la placa de circuito impreso y la soldadura líquida, ésta se enfriará al subir por el orificio pasante. Las placas y los componentes térmicamente pesados pueden extraer tanto calor de la soldadura líquida que ésta se enfría hasta el punto de solidificación, donde se congela antes de llegar a la parte superior. Este es un problema típico cuando se utilizan aleaciones de Sn(Ag)Cu. Un buen precalentamiento limita la diferencia de temperatura entre la placa de circuito impreso y la soldadura líquida y, por tanto, reduce el enfriamiento de la soldadura líquida al subir por el orificio pasante. Esto da más posibilidades de que la soldadura líquida llegue a la parte superior del agujero pasante. En un tercer paso, la placa de circuito impreso se pasa por una ola de soldadura. Se calienta un baño lleno de una aleación de soldadura hasta alcanzar la temperatura de soldadura. Esta temperatura de soldadura depende de la aleación de soldadura utilizada. La aleación líquida se bombea a través de canales hasta un formador de olas. Existen varios tipos de formadores de olas. Una configuración tradicional es una ola de virutas combinada con una ola principal laminar. La onda de chip inyecta la soldadura en la dirección del movimiento de la placa de circuito impreso y permite soldar la cara posterior de los componentes SMD que están protegidos del contacto de la onda en la onda laminar por el cuerpo del propio componente es. La ola laminar principal fluye hacia delante, pero la placa trasera ajustable está colocada de tal forma que la placa empujará la ola hacia atrás. Esto evitará que la placa de circuito impreso sea arrastrada por los productos de reacción de la soldadura. Un formador de olas que está ganando popularidad es el de olas Wörthmann, que combina la función de la ola de chip y la ola principal en una sola ola. Esta ola es más sensible al ajuste correcto y al puenteado. Debido a que las aleaciones de soldadura sin plomo necesitan altas temperaturas de trabajo y tienden a oxidarse bastante, muchos procesos de soldadura por ola se realizan en atmósfera de nitrógeno. Una nueva tendencia del mercado y el considerado por algunos como el futuro de la soldadura es el uso de una aleación de bajo punto de fusión, ej. LMPA-Q. LMPA-Q necesita menos temperatura y reduce la oxidación. También tiene algunas ventajas relacionadas con los costes, como la reducción del consumo eléctrico, la reducción del desgaste de los soportes y la no necesidad de nitrógeno. También reduce el impacto térmico sobre los componentes electrónicos y los materiales de las placas de circuito impreso.

Principales ventajas

  • La química de soldadura absolutamente libre de halógenos no contiene halógenos ni haluros añadidos intencionadamente. La clasificación IPC permite hasta 500ppm de halógenos para la clasificación más baja 'L0'. Los flux para soldadura, las pastas de soldadura y los alambres de soldadura de esta clase suelen denominarse 'libres de halógenos'. La química de soldadura absolutamente libre de halógenos va un paso más allá y no contiene este nivel 'permitido' de halógenos. Específicamente en combinación con aleaciones de soldadura sin plomo y en aplicaciones electrónicas sensibles, se ha informado de que estos bajos niveles de halógenos causan problemas de fiabilidad como, por ejemplo, corrientes de fuga demasiado altas. Los halógenos son elementos de la tabla periódica como el Cl, el Br, el F y el I. Tienen la propiedad física de que les gusta reaccionar. Esto es muy interesante desde el punto de vista de la química de la soldadura porque su función es limpiar los óxidos de las superficies a soldar. Y efectivamente los halógenos realizan muy bien ese trabajo, incluso superficies difíciles de limpiar como el latón, Zn, Ni,...o superficies muy oxidadas o degradadas de I-Sn y OSP (Protección Orgánica de Superficies) pueden soldarse con la ayuda de flux halogenados. Los halógenos proporcionan una gran ventana de proceso en la soldabilidad. Sin embargo, el problema es que los residuos y productos de reacción de los flux halogenados pueden ser problemáticos para los circuitos electrónicos. Suelen tener una alta higroscopicidad y una elevada solubilidad en agua y suponen un mayor riesgo de electromigración y de altas corrientes de fuga. Esto supone un alto riesgo de mal funcionamiento del circuito electrónico. Específicamente con las aleaciones de soldadura sin plomo hay más informes de que incluso los niveles más pequeños de halógenos pueden ser problemáticos para las aplicaciones electrónicas sensibles. Las aplicaciones electrónicas sensibles suelen ser circuitos de alta resistencia, circuitos de medición, circuitos de alta frecuencia, sensores,... Por eso la tendencia es alejarse de los halógenos en la química de la soldadura en la fabricación de productos electrónicos. En general, cuando la soldabilidad de las superficies a soldar del componente y de la placa de circuito impreso (PCB) son normales, no hay necesidad de estos halógenos. Los productos de soldadura absolutamente libres de halógenos diseñados de forma inteligente proporcionarán una ventana de proceso lo suficientemente amplia como para limpiar las superficies y obtener un buen resultado de soldadura y esto en combinación con residuos de alta fiabilidad.

  • RoHS son las siglas en inglés de Restricción de Sustancias Peligrosas. Se trata de una directiva europea: Directiva 2002/95/CE. Restringe el uso de algunas sustancias que se consideran Sustancias Extremadamente Preocupantes (SHVC) en aparatos eléctricos y electrónicos para el territorio de la Unión Europea. A continuación encontrará un listado de estas sustancias: Tenga en cuenta que esta información está sujeta a cambios. Consulte siempre la página web de la Unión Europea para obtener la información más reciente: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1. Cadmio y compuestos de cadmio 2. Plomo y compuestos de plomo 3. Mercurio y compuestos de mercurio(Hg) 4. Compuestos de cromo hexavalente(Cr) 5. Bifenilos policlorados (PCB) 6. Naftalenos policlorados (PCN) 7. Parafinas cloradas (PC) 8. Otros compuestos orgánicos clorados 9. Bifenilos polibromados (PBB) 10. Difeniléteres polibromados (PBDE) 11. Otros compuestos orgánicos bromados 12. Compuestos orgánicos de estaño (compuestos de tributilestaño, compuestos de trifenilestaño) 13. Amianto 14. Compuestos azoicos 15. Formaldehído 16. Cloruro de polivinilo (PVC) y mezclas de PVC 17. Éster difenílico decabromado (a partir del 1/7/08) 18. PFOS : Directiva 76/769/CEE de la UE (no se permite en una concentración igual o superior al 0,0005% en masa) 19. Bis(2-etilhexil) ftalato (DEHP) 20. Butilbencilftalato (BBP) 21. Dibutilftalato (DBP) 22. Diisobutilftalato 23. Deca éster difenílico bromado (en equipos eléctricos y electrónicos) Otros países fuera de la Unión Europea han introducido su propia legislación RoHS, que en gran medida es muy similar a la europea.

  • Las bolas de soldadura son pequeñas bolas de aleación de soldadura que quedan en la máscara de soldadura de la placa de circuito impreso (PCB) tras la soldadura por ola, selectiva o por reflujo. No son deseables, pero a menudo están presentes. Suelen estar causados por más parámetros. En la soldadura por ola, el mayor parámetro es la máscara de soldadura. La tendencia de una máscara de soldadura a "generar" bolas de soldadura depende de la estructura de su superficie, que es una propiedad de la propia máscara de soldadura. Además, hay que respetar los parámetros correctos de curado de la máscara de soldadura en la fabricación de PCB (circuitos impresos). Un curado deficiente puede dar lugar a más bolas de soldadura. Un segundo parámetro es el flux. Algunos flux tienen más tendencia a la formación de bolas de soldadura que otros. En general, los flux con mayor contenido en sólidos y los flux de la clasificación "RO" generan menos bolas de soldadura. En general, los flux con base de agua generan más bolas de soldadura que los flux con base de alcohol, pero existen versiones especiales de flux con base de agua que proporcionan menos bolas de soldadura que los flux con base de alcohol, como PacIFic 2009MLF y PacIF 2009MLF-E. En el proceso es importante que el ajuste de la aplicación de flux sea correcto en combinación con el ajuste de precalentamiento adecuado para minimizar la formación de bolas de soldadura. Demasiado flux, o flux que se ha introducido entre el soporte y la placa de circuito impreso, puede ser difícil de secar en el precalentamiento y puede generar bolas de soldadura al entrar en contacto con la ola. Unos ajustes de precalentamiento demasiado bajos en este asunto también pueden ser problemáticos, sobre todo con los flux a base de agua. Un precalentamiento por convección de aire caliente puede ayudar a evaporar los disolventes del flux. Otro parámetro es la onda de soldadura. Las ondas turbulentas generan más bolas de soldadura. Las turbulencias pueden deberse al tipo de formador de olas en sí (como, por ejemplo, un formador de olas para chips o un formador de olas Wörthmann) o a un mal ajuste o a la contaminación por escoria en el formador de olas. La construcción física de la placa de circuito impreso y del soporte también puede crear turbulencias adicionales. Las placas de circuito impreso con muchos componentes en el lado de la soldadura y los soportes con cavidades pequeñas y profundas crearán turbulencias adicionales. En la soldadura selectiva también la máscara de soldadura es el principal parámetro para las bolas de soldadura y las diferencias entre los flux son similares a las de la soldadura por ola. En este proceso la propia mini onda es turbulenta y a menudo se utiliza para soldar conectores que crean una turbulencia extra. El resultado es que, en general, el proceso de soldadura selectiva es aún más sensible a las bolas de soldadura que la soldadura por ola. En la soldadura por reflujo, la principal causa de las bolas de soldadura es el proceso de impresión de la pasta de soldadura. Si la pasta de soldadura acaba fuera de las almohadillas de soldadura mojables, esto puede dar lugar a bolas de soldadura tras el reflujo. Las causas pueden ser numerosas: La colocación horizontal de la placa de circuito impreso (PCB) debajo del esténcil no fue correcta, la alineación vertical de la PCB y el esténcil no fue correcta (no paralela). La presión de la PCB contra el esténcil no era lo suficientemente alta, la presión de la rasqueta era demasiado alta, la velocidad de impresión era demasiado baja, no había reducción de la apertura del esténcil, había una desviación en la PCB, la temperatura en producción era demasiado alta (>30°C), acumulación de residuos debido a intervalos demasiado largos para la limpieza del esténcil, una pasta de soldadura que se desploma tras la impresión, una pasta de soldadura oxidada, ... Algunas pastas de soldadura pueden ser más sensibles que otras a generar bolas de soldadura cuando se encuentran fuera de la almohadilla humectable. Otra causa de la formación de bolas de soldadura puede ser la unidad Pick and Place. Cuando la fuerza vertical al colocar el componente es demasiado elevada, puede provocar que la pasta se aplaste y acabe fuera de la almohadilla humectable. Por desgracia, no todas las máquinas Pick and Place son fácilmente ajustables en este aspecto. El perfil de soldadura también puede contribuir a la formación de bolas de soldadura. Se sabe que las zonas de remojo entre 100-150°C hacen que algunas pastas de soldadura se desplomen y acaben fuera de la almohadilla. Sin embargo, esto puede variar mucho de una pasta de soldadura a otra. Los hornos de fase de vapor en general también son un poco más sensibles a crear bolas de soldadura, ya que el líquido que se condensa en el vapor puede hacer que la pasta de soldadura se desplome. También en este caso, puede haber una diferencia bastante grande entre una pasta de soldadura y otra. Otro fenómeno en el que una bola de soldadura se pega al lateral de un componente del chip se denomina cordón de soldadura. Esto se debe principalmente a un exceso de pasta de soldadura y a la parte no mojable del plomo del componente que está en contacto con la pasta de soldadura. El exceso de pasta de soldadura quedará como una bola de soldadura pegada al lado del componente del chip. Para solucionar el problema del cordón de soldadura se utiliza una pantalla más fina, una mayor reducción de la abertura de la pantalla y un diseño especial de la abertura de la

  • La colofonia es un producto natural procedente de los árboles. Hay muchos tipos de colofonias con propiedades muy diferentes, pero se aplican algunas propiedades generales. Como parte de la química de la soldadura, al igual que los flux de soldadura, las pastas de soldadura y los alambres de soldadura, en general, la colofonia proporciona una gran ventana de proceso en el proceso de soldadura. Esto significa que, en general, es capaz de soportar tiempos más largos y temperaturas más altas que, por ejemplo, una resina. Una ventaja de la colofonia en un flux líquido es que, en general, tiende a dejar menos bolas de soldadura en la máscara de soldadura tras la soldadura por ola o selectiva. Además, el residuo de colofonia proporcionará una cierta protección contra la humedad atmosférica. Esto puede proporcionar una posibilidad extra de superar las pruebas de fiabilidad climática. Sin embargo, esta capacidad de protección se degrada con el tiempo. Por otro lado, la colofonia contenida en un flux para soldadura líquida también puede tener algunas desventajas. Aumenta el riesgo de que se obstruya la boquilla de pulverización o la boquilla de chorro de las máquinas de soldadura por ola y selectiva. Los residuos que quedan en la máquina y en los soportes son bastante difíciles de limpiar. Los residuos que quedan en la placa de circuito impreso pueden interferir en la prueba de pines eléctricos (ICT, In Circuit Testing) y crear un problema de contacto causando una lectura falsa/error falso. En algunos casos esto puede llevar a la obstrucción del flujo de producción. Cuando parte de la colofonia que contiene el flux pulverizado acaba accidentalmente en los contactos de, por ejemplo, un conector, un interruptor/relé/contactor con una carcasa parcialmente abierta o en los contactos de carbono o en el patrón de contactos de la placa de circuito impreso, esto también puede provocar problemas de contacto. En general, los residuos de colofonia son poco compatibles con los revestimientos conformados. Tras un ciclo térmico, el revestimiento conforme puede empezar a mostrar grietas por las que puede penetrar la humedad atmosférica y condensarse. Teniendo en cuenta todo lo anterior, sopesando las ventajas de la colofonia en los flux líquidos para soldadura frente a los inconvenientes, existe una tendencia actual a optar por flux líquidos sin colofonia. Los flux clasificados 'OR' no contienen colofonia. La colofonia se utiliza muy a menudo en los hilos de soldadura debido a su amplia ventana de proceso en tiempo y temperatura. La desventaja es que la colofonia tiende a decolorarse con la temperatura y deja residuos visualmente pesados. Cuando el alambre de soldadura se utiliza para repasar placas de circuito impreso electrónicas, este residuo es para algunos fabricantes electrónicos no deseable, ya que no les gusta que sus clientes vean que se ha realizado un repaso en una placa de circuito impreso. La limpieza de estos residuos de colofonia requiere agentes de limpieza especiales y es un proceso que lleva mucho tiempo. En este caso, los fabricantes pueden optar por un hilo de soldadura clasificado RE como el IF 14. Los residuos son mínimos y pueden eliminarse con un cepillo seco. La colofonia también se utiliza en pastas de soldadura. Además de proporcionar una buena ventana de proceso en tiempo y temperatura, también proporciona una buena estabilidad de la pasta de soldadura sobre el esténcil. Esto facilitará un proceso de impresión estable y, por tanto, unos resultados de soldadura y unos índices de defectos estables. La decoloración de la colofonia en la soldadura por reflujo no es tan prominente como en el caso del hilo de soldadura porque las temperaturas en la soldadura por reflujo son más bajas que en la soldadura manual. Aún así, el residuo de colofonia tiene poca compatibilidad con el revestimiento de conformación y con el tiempo, tras los ciclos térmicos, podría mostrar grietas o desprendimiento del revestimiento de conformación. Aunque la mayoría de los fabricantes aplican el revestimiento de conformación sobre los restos de pasta de soldadura, para obtener resultados óptimos es aconsejable limpiar los restos de pasta de soldadura. Dadas las ventajas de la colofonia descritas anteriormente, la mayoría de las pastas de soldadura contienen colofonia.

  • Los flux para soldadura a base de alcohol son flux líquidos que tienen alcohol(es) como disolvente(s) principal(es). La mayoría de los flux líquidos utilizados en la fabricación de productos electrónicos siguen siendo de base alcohólica. Las razones principales son su uso histórico y, por tanto, su cuota de mercado y su ventana de proceso, en general, mayor en comparación con los flux de base acuosa. Los flux de base acuosa tienen numerosas ventajas frente a los de base alcohólica, como un menor consumo, la ausencia de emisiones de COV (compuestos orgánicos volátiles, VOC en sus siglas en inglés), la ausencia de riesgo de incendio, la no necesidad de transporte y almacenamiento especiales, un menor olor en la zona de producción, ... Sin embargo, muchos fabricantes de electrónica parecen preferir la mayor ventana de proceso de los flux de base alcohólica a las ventajas de los flux de base acuosa. En general, los flux con base de alcohol son menos sensibles a los ajustes correctos del pulverizador flux para conseguir una buena aplicación del flux en la superficie y en los orificios pasantes. Además, se evaporan más fácilmente en el precalentamiento y ofrecen menos riesgo de que las gotas de disolvente restantes creen bolas de soldadura, salpicaduras de soldadura o puentes al entrar en contacto con la ola. Otro parámetro que complica la implantación de los flux al agua es que cambiar un flux en algunos casos puede ser un proceso largo y costoso. Suele implicar pruebas de homologación y la aprobación de los clientes finales. Específicamente para los EMS (Electronic Manufacturing Services = subcontratistas) esto puede suponer un reto. Algunos países ya han aplicado una legislación que limita las emisiones de COV de las chimeneas de las fábricas o que impone impuestos a las emisiones de COV. Esto parece ser un incentivo adicional para cambiar a los flux de base acuosa. Un acontecimiento reciente ha obligado a muchos fabricantes a interesarse por los flux de base acuosa. La pandemia de COVID, a principios de 2020, aumentó repentinamente la demanda de desinfectantes a base de alcohol hasta el punto de que en un momento dado la disponibilidad de alcoholes en el mercado era prácticamente inexistente. Por suerte, la industria que produce alcoholes pudo aumentar sus volúmenes justo a tiempo para evitar que los fabricantes de electrónica se quedaran sin flux para hacer funcionar sus máquinas de soldar.