PacIFic 2010F

Flux para soldadura a espuma a base de agua

Interflux® PacIFic 2010F es un flux de soldadura sin limpieza a base de agua para aplicaciones de flux de espuma. PacIFic 2010F proporciona bajos residuos tras la soldadura.

PacIFic 2010F 10L angle

Adecuado para

  • El flux de espuma es una tecnología utilizada en el montaje de componentes electrónicos para aplicar flux a la placa de circuito impreso en el proceso de soldadura por ola. El flux es necesario para desoxidar las superficies a soldar. Esta tecnología ha sido sustituida principalmente por el flux en spray, pero ofrece algunas ventajas. Proporciona una buena e igual humectación con flux de la placa de circuito impreso y de los orificios pasantes y es una unidad sencilla y barata sin piezas móviles. Las desventajas son que el volumen de flux aplicado no puede variarse y siempre es máximo. Además, es un sistema abierto con evaporación del disolvente del flux y absorción potencial de agua del aire (típico de los flux a base de alcohol) que requiere controlar el contenido sólido o la densidad del flux y ajustarlo con diluyente de flux. También la contaminación de las placas que pasan por el flux puede afectar a la capacidad de espumado y a las propiedades del flux. Una piedra de espuma con agujeros muy finos (~10-20µm) se monta en una boquilla que se sumerge en flux. Se empuja aire a presión a través de la piedra de espuma para crear una espuma que suba por la boquilla. La placa de circuito impreso se transporta a través de la espuma que sale de la boquilla. La espuma volverá a caer en el depósito de flux. El depósito de flux y la boquilla suelen ser de acero inoxidable, pero también pueden ser de un plástico resistente a los disolventes como el HDPE. Algunos parámetros importantes son: El aire a presión tiene que estar libre de agua y aceite, por lo que se necesita un separador de agua y aceite. La longitud de la piedra de espuma es preferiblemente tan grande como la boquilla para conseguir una formación de espuma igual en toda la boquilla. Es aconsejable que la parte superior de la piedra de espuma se mantenga sumergida al menos 3 cm por debajo de la superficie del flux. Para mantener estable el nivel de flux en el depósito, algunos sistemas utilizan un sistema de rebosadero por el que se bombea el flux y, en algunos casos, se filtra. Evite que la piedra de espuma entre en contacto con el aire, ya que los residuos de flux pueden secarse y obstruir los orificios. Si eso ocurre, la piedra de espuma debe limpiarse en un disolvente o sustituirse. La abertura de la boquilla de flux es preferiblemente de 8-10 mm. Ajuste la presión del aire hasta conseguir una formación de espuma suave. El contacto de la espuma con la placa de circuito impreso puede comprobarse con una placa de vidrio. Con esta placa de vidrio también se puede comprobar el ajuste de la cuchilla de aire. La cuchilla de aire es un tubo con orificios taladrados preferiblemente de 1 mm de diámetro y separados entre sí 5 mm. Esto creará una cortina de aire uniforme con aire a presión. La cuchilla de aire se monta detrás del fundidor de espuma en ángulo, de modo que la cortina de aire soplará el exceso de flux de la placa de circuito impreso, que volverá a caer en el depósito de flux. Es posible que en la placa de vidrio no se formen rayas secas. Si este es el caso, es necesario reducir la presión del aire en la cuchilla de aire. Es posible que no caigan gotas de flux de la placa de vidrio después de que haya pasado por la cuchilla de aire. En este caso, deberá aumentar la presión de aire de la cuchilla. La mayoría de los flux de base acuosa no son adecuados para la formación de espuma. PacIFic 2010F es un flux base agua diseñado específicamente para espumar.

  • La soldadura por ola es un proceso de soldadura en masa utilizado en la fabricación de productos electrónicos para conectar componentes electrónicos a una placa de circuito impreso. El proceso se utiliza normalmente para componentes con orificios pasantes, pero también puede emplearse para soldar algunos componentes SMD (Suface Mount Device) que se pegan con un adhesivo SMT (Surface Mount Technology) a la cara inferior de la placa de circuito impreso antes de pasar por el proceso de soldadura en ola. El proceso de soldadura por ola consta de tres pasos principales : Fundido, precalentamiento y soldadura. Una cinta transportadora traslada las placas de circuito impreso a través de la máquina. Las placas de circuito impreso pueden montarse en un bastidor para evitar tener que ajustar la anchura del transportador para cada placa de circuito impreso diferente. El fundido se realiza normalmente mediante un fundidor de pulverización, pero también es posible el fundido por espuma y el fundido por chorro. El flux líquido se aplica desde la parte inferior de la placa de circuito impreso en la superficie y en los orificios de la canaleta. La finalidad del flux es desoxidar las superficies soldables de la placa de circuito impreso y los componentes y permitir que la aleación de soldadura líquida establezca una conexión intermetálica con dichas superficies dando lugar a una unión soldada. El precalentamiento tiene tres funciones principales. Es necesario evaporar el disolvente del flux, ya que pierde su función una vez aplicado y puede provocar defectos en la soldadura, como la formación de puentes y bolas de soldadura, cuando entra en contacto con la ola de soldadura en estado líquido. En general, los flux a base de agua necesitan más precalentamiento para evaporarse que los flux a base de alcohol. La segunda función del precalentamiento es limitar el choque térmico cuando la placa de circuito impreso entra en contacto con la soldadura líquida de la ola de soldadura. Esto puede ser importante para algunos componentes SMD y materiales de PCB. La tercera función del precalentamiento es favorecer la humectación de la soldadura a través de los orificios. Debido a la diferencia de temperatura entre la placa de circuito impreso y la soldadura líquida, ésta se enfriará al subir por el orificio pasante. Las placas y los componentes térmicamente pesados pueden extraer tanto calor de la soldadura líquida que ésta se enfría hasta el punto de solidificación, donde se congela antes de llegar a la parte superior. Este es un problema típico cuando se utilizan aleaciones de Sn(Ag)Cu. Un buen precalentamiento limita la diferencia de temperatura entre la placa de circuito impreso y la soldadura líquida y, por tanto, reduce el enfriamiento de la soldadura líquida al subir por el orificio pasante. Esto da más posibilidades de que la soldadura líquida llegue a la parte superior del agujero pasante. En un tercer paso, la placa de circuito impreso se pasa por una ola de soldadura. Se calienta un baño lleno de una aleación de soldadura hasta alcanzar la temperatura de soldadura. Esta temperatura de soldadura depende de la aleación de soldadura utilizada. La aleación líquida se bombea a través de canales hasta un formador de olas. Existen varios tipos de formadores de olas. Una configuración tradicional es una ola de virutas combinada con una ola principal laminar. La onda de chip inyecta la soldadura en la dirección del movimiento de la placa de circuito impreso y permite soldar la cara posterior de los componentes SMD que están protegidos del contacto de la onda en la onda laminar por el cuerpo del propio componente es. La ola laminar principal fluye hacia delante, pero la placa trasera ajustable está colocada de tal forma que la placa empujará la ola hacia atrás. Esto evitará que la placa de circuito impreso sea arrastrada por los productos de reacción de la soldadura. Un formador de olas que está ganando popularidad es el de olas Wörthmann, que combina la función de la ola de chip y la ola principal en una sola ola. Esta ola es más sensible al ajuste correcto y al puenteado. Debido a que las aleaciones de soldadura sin plomo necesitan altas temperaturas de trabajo y tienden a oxidarse bastante, muchos procesos de soldadura por ola se realizan en atmósfera de nitrógeno. Una nueva tendencia del mercado y el considerado por algunos como el futuro de la soldadura es el uso de una aleación de bajo punto de fusión, ej. LMPA-Q. LMPA-Q necesita menos temperatura y reduce la oxidación. También tiene algunas ventajas relacionadas con los costes, como la reducción del consumo eléctrico, la reducción del desgaste de los soportes y la no necesidad de nitrógeno. También reduce el impacto térmico sobre los componentes electrónicos y los materiales de las placas de circuito impreso.

  • El flux de chorro o flux de microchorro o flux de chorro de gota es una tecnología utilizada en el ensamblaje de componentes electrónicos para aplicar flux de forma selectiva a las superficies que se van a soldar en el proceso de soldadura selectiva y, a veces, también en el proceso de soldadura por ola. El flux es necesario para desoxidar estas superficies. Una boquilla dispara pequeñas gotas de flux desde un depósito de flux presurizado a la cara inferior de una placa de circuito impreso. La boquilla puede estar colocada en un plano X/Y (flux puntual) o desplazarse a lo largo de una trayectoria en el plano X/Y (flux lineal). Normalmente la placa de circuito impreso está parada durante la aplicación del flux, pero algunos sistemas autónomos como el ICSF Select pueden aplicar el flux mientras la placa está en movimiento, lo que puede ser importante en un proceso de soldadura por ola de gran volumen. El volumen de flux puede programarse y dependiendo del sistema se expresa en gotas/s, Hz, ... Para el fundido por puntos se puede programar el tiempo y para el fundido por líneas se puede programar la velocidad. El objetivo del fundidor de chorro es aplicar flux a las superficies a soldar que son la superficie de la patilla del componente y la superficie del orificio de paso de la placa de circuito impreso. Dependiendo del tamaño del componente y de la relación patilla/agujero hay varias formas de programar el fundidor para que el flux acabe en las superficies a soldar. Esto requiere cierta experiencia. También es recomendable que no se aplique flux fuera de la zona de contacto con la boquilla de soldadura en el proceso de soldadura. Este flux no verá el calor de la soldadura y quedará en la placa como un residuo de flux no consumido. Dependiendo del flux utilizado y de la sensibilidad de la unidad electrónica, estos residuos pueden ser críticos para la fiabilidad de la unidad electrónica. En este asunto es importante utilizar un flux de la clasificación 'L0' que además esté absolutamente libre de halógenos. Los flux diseñados específicamente para la soldadura selectiva, como SelectIF 2040 e IF 2005C, ofrecen la mejor posibilidad de aplicar el flux sólo en las superficies que se van a soldar en combinación con el mejor rendimiento de soldadura. Además, es importante que el posicionamiento del flux de chorro se calibre con regularidad para asegurarse de que la boquilla está exactamente donde se ha programado que esté. En caso de duda sobre si el fundidor de chorro está depositando el flux donde se ha programado, se puede fundir una placa de circuito impreso sin el siguiente paso de precalentamiento y soldadura. Cuando la placa sale de la máquina puede inspeccionarse desde la parte inferior para verificar la correcta aplicación del flux. Un problema que se observa a veces es el bloqueo de la boquilla por residuos de flux resecos. Algunos sistemas verifican si el flux sale por la boquilla, pero otros no. En este asunto es aconsejable utilizar flux de la clasificación 'OR', lo que significa que no contienen colofonia ni resina que son sustancias pegajosas que pueden causar este bloqueo de la boquilla. También es aconsejable una limpieza regular de la boquilla. Si hay un filtro de flux en el sistema, compruebe periódicamente si está obstruido. No aumente la presión del depósito de flux para solucionar un problema de obstrucción de la boquilla.

  • El flux en spray es una tecnología utilizada en el montaje de componentes electrónicos para aplicar flux a la placa de circuito impreso en el proceso de soldadura por ola. El flux es necesario para desoxidar las superficies a soldar. La ventaja del flux en spray es que hay poco o ningún contacto del flux del sistema con el aire y no es necesario controlar la calidad del flux. En la mayoría de los sistemas, el flux se bombea directamente desde el tambor de flux o desde un depósito de flux a través de una boquilla donde se mezcla con aire a presión para formar un cono de pulverización/haz de pulverización. La boquilla de pulverización se mueve de izquierda a derecha mientras la placa de circuito impreso se transporta por encima de ella. El objetivo es aplicar una capa uniforme de flux sobre la superficie (lado inferior) de la placa de circuito impreso, así como en los orificios pasantes. La construcción física de la boquilla de pulverización en combinación con una determinada presión de aire determinará el cono de pulverización y la anchura de pulverización. Esta anchura de pulverización determinará la velocidad a la que la boquilla tendrá que desplazarse de izquierda a derecha para obtener un patrón de pulverización uniforme a una velocidad de transporte dada de la PCB. La velocidad de transporte de la PCB suele estar determinada por el rendimiento deseado, pero limitada por la masa térmica de la PCB. Siempre es aconsejable pulverizar desde ambos lados del movimiento de la boquilla para superar los efectos de sombra de las bolsas profundas de soportes de PCB o componentes SMD en la parte inferior. La presión de aire debe ajustarse de forma que el cono de pulverización tenga suficiente potencia para introducir el flux en los orificios pasantes. Sin embargo, una presión de aire demasiado alta puede hacer que el flux quede presionado entre el soporte y la placa de circuito impreso, donde queda protegido del contacto de las ondas y permanecerá como un residuo de flux no consumido en la placa de circuito impreso. Una presión de aire demasiado alta también puede hacer que se desplacen los componentes con una relación clavija-agujero floja y que haya más contaminación de flux en la máquina. Para verificar el ajuste correcto para un patrón de pulverización uniforme se puede utilizar un cartón en lugar de la placa de circuito impreso que se retirará de la máquina antes del precalentamiento y se comprobará si presenta una decoloración uniforme. Los sistemas en los que la boquilla de flux es accionada por un motor (paso a paso) en general son más suaves que los sistemas que utilizan un cilindro neumático y dan una mejor oportunidad en un patrón de pulverización uniforme. Para encontrar los ajustes correctos para una buena humectación del flux a través de los orificios se puede aplicar un papel encima de la placa de circuito impreso no poblada. Se retirará de la máquina antes del precalentamiento y se comprobará si hay decoloración en cada posición donde haya un agujero pasante. Esta metodología, sin embargo, no comprueba una relación ajustada entre agujas y agujeros porque los componentes no están presentes, pero en muchos casos puede ser una buena indicación para un ajuste correcto. El volumen de flux correcto es aquel volumen de flux que da buenos resultados de soldadura y proporciona la menor formación de residuos. Este volumen puede variar sustancialmente de una placa de circuito impreso a otra. La mejor manera de encontrar este volumen óptimo de flux es por ensayo y error. Se puede utilizar como punto de partida un volumen de flux bastante alto en el que la placa de circuito impreso esté visualmente húmeda pero no gotee flux de la placa. A continuación, el volumen de flux puede reducirse gradualmente hasta que aparezcan defectos de soldadura como puentes, formación de hielo (picos), formación de telarañas, ... A continuación, vuelva al ajuste anterior que no mostró estos defectos de soldadura. A continuación, los ajustes para este volumen óptimo de flux pueden aplicarse a una placa de circuito impreso de prueba que se pesa antes y después del flux. Es aconsejable hacer esto varias veces y calcular un valor medio. Este valor puede utilizarse entonces para hacer un proceso regular de estabilidad con esa PCB de prueba. Las boquillas de flux fabricadas en acero inoxidable son preferibles a las chapadas porque tienen una mayor compatibilidad con los flux de base acuosa. Los flux de base acuosa, en general, son más sensibles a los ajustes correctos del flux de pulverización que los flux de base alcohólica. Es aconsejable utilizar un flux de la clasificación 'OR L0' que además esté absolutamente libre de halógenos. Estos flux dan la menor formación de residuos en la placa de circuito impreso y proporcionan la mayor fiabilidad de los residuos que quedan en la placa de circuito impreso. Además, ofrecen el menor riesgo de problemas de contacto ICT (In Circuit Test), de bloqueo de la boquilla de flux y son los más fáciles de limpiar de la máquina y de los soportes.

Principales ventajas

  • Los flux para soldadura a base de agua son flux líquidos que tienen agua (H2O) como disolvente principal. Los flux con base de agua tienen numerosas ventajas frente a los flux con base de alcohol, como un menor consumo, ausencia de emisiones de COV (Compuestos Orgánicos Volátiles), ausencia de riesgo de incendio, ausencia de necesidad de transporte y almacenamiento especiales, menor olor en la zona de producción, ... Sin embargo, muchos fabricantes de electrónica parecen preferir la mayor ventana de proceso de los flux con base de alcohol a las ventajas de los flux con base de agua. En general, los flux con base de alcohol son menos sensibles a los ajustes correctos del pulverizador flux para conseguir una buena aplicación del flux en la superficie y en los orificios pasantes. Además, se evaporan más fácilmente en el precalentamiento y ofrecen menos riesgo de que las gotas de disolvente restantes creen bolas de soldadura, salpicaduras de soldadura o puentes al entrar en contacto con la ola. Sin embargo, algunos países ya han puesto en marcha una legislación que limita la emisión de COV de las chimeneas de las fábricas o que impone impuestos sobre las emisiones de COV. Esto parece ser un incentivo adicional para cambiar a los flux de base acuosa. Un acontecimiento reciente ha obligado a muchos fabricantes a interesarse por los flux de base acuosa. La pandemia de COVID, a principios de 2020, aumentó repentinamente la demanda de desinfectantes a base de alcohol hasta el punto de que en un momento dado la disponibilidad de alcoholes en el mercado era prácticamente inexistente. Es muy probable que esto aumente la aceptación de los desinfectantes a base de agua en el mercado. También la conciencia ecológica mundial ha mejorado sustancialmente en los últimos tiempos, lo que impulsa a muchas empresas hacia una política más ecológica y sostenible. Esto también se traducirá en una mayor aceptación de los flux al agua en el mercado.

  • Los residuos tras la soldadura son inherentes al proceso de soldadura. Algunos productos de soldadura dejarán más residuos que otros. En general, los productos de soldadura que dejan pocos residuos son los preferidos. Los residuos suelen ser indeseables por más razones potenciales. Una de esas razones es estética. Cuando el cliente final recibe sus placas, obviamente le gusta que estén lo más limpias posible. Los residuos también pueden interferir en las pruebas eléctricas por muestreo, como las ICT (pruebas en circuito) o las sondas volantes. Pueden crear problemas de contacto y falsas lecturas que pueden obstruir el flujo de producción. Los residuos también pueden acumularse en las clavijas de prueba, donde es necesario limpiarlos. Estas clavijas de prueba son bastante frágiles y el riesgo de dañarlas durante la limpieza es real. Los residuos del proceso de soldadura también pueden interferir con las señales de alta frecuencia de las aplicaciones electrónicas sensibles. Los residuos creados por la colofonia y la resina suelen ser poco compatibles con los revestimientos conformados. Además, se sabe que causan problemas de contacto cuando acaban en los contactos de los conectores, los contactos (de carbono) de los mandos a distancia, las superficies de contacto de interruptores, relés, contactores,... y provocan fallos en campo. Cuando el producto de soldadura se clasifica como 'No-clean' es una indicación de que los residuos de estos productos de soldadura pueden permanecer en la unidad electrónica. Esto se basa en la superación de pruebas de fiabilidad como las pruebas de Resistencia al Aislamiento Superficial (SIR) y las pruebas de electro migración (química). Existen muchas normas en todo el mundo que especifican este tipo de pruebas. La norma más aceptada es la norma IPC. En estas pruebas de fiabilidad se suelda una placa de prueba con un patrón de peine con parámetros especificados con el producto de soldadura. La placa de prueba se somete a condiciones de alta humedad y temperatura elevada durante un periodo de tiempo definido en el que se controla la resistencia de aislamiento de la superficie. Esta resistencia de aislamiento superficial no puede caer por debajo de un valor definido y las placas también se inspeccionan visualmente con un microscopio en busca de anomalías como, por ejemplo, electro migración (química).

  • ICT son las siglas de In Circuit Testing (pruebas en circuito). Es un método de prueba eléctrica para placas de circuitos electrónicos después del montaje y la soldadura. Utiliza clavijas de prueba para contactar con la placa de circuito impreso y medir la presencia y el valor eléctrico correcto de los componentes electrónicos. Un problema común en este proceso son los malos contactos causados por residuos del flux de soldadura, la pasta de soldadura, la máscara de soldadura u otras sustancias. Esto provocará un falso error, es decir, que se notifique un problema donde no lo hay. Esto puede provocar graves obstrucciones en el flujo de producción de un montaje electrónico. El problema es más destacado cuando se miden resistencias pequeñas y con almohadillas de prueba pequeñas. Algunos flux de soldadura contienen sustancias que dejan una capa uniforme, pueden provocar un mal contacto o pueden ensamblarse en las clavijas de prueba y al cabo de un tiempo dar un mal contacto. La limpieza de esas clavijas de prueba debe hacerse con cuidado, ya que son frágiles y caras. En este asunto, es importante evitar el uso de flux de soldadura que contengan sustancias que puedan crear estos residuos. Normalmente se clasifican como 'RO' o 'RE' según el IPC, lo que significa que contienen una colofonia natural o una resina sintética. Se prefieren los flux clasificados como 'OR'. Las pastas de soldadura se clasifican prácticamente siempre como 'RO' o 'RE'. Necesitan una colofonia o resina debido a su consistencia requerida para la impresión de esténciles. Esto significa que siempre dejarán un residuo que puede interferir en las pruebas eléctricas. Si interferirán y en qué medida depende mucho de la propia pasta de soldadura. Puede haber diferencias notables entre una pasta de soldadura y otra.

  • Un revestimiento de conformación es una capa de protección que suele utilizarse en dispositivos electrónicos sometidos a atmósferas agresivas. En la mayoría de los casos, el revestimiento de conformación se aplica sobre la unidad electrónica sin limpieza previa. Algunos residuos del proceso de soldadura y de los productos de soldadura pueden tener un efecto negativo en la adherencia a largo plazo de la capa de protección sobre la unidad electrónica. Esto suele dar lugar a pequeñas grietas por las que puede penetrar y condensarse la humedad atmosférica, lo que puede provocar un aumento de las corrientes de fuga o una electro migración (química). Sin embargo, algunos productos de soldadura tienen una gran compatibilidad con los revestimientos conformados. Los productos de soldadura que dejan pocos residuos y están clasificados como "OR" suelen tener una alta compatibilidad con los revestimientos conformados.

  • La química de soldadura absolutamente libre de halógenos no contiene halógenos ni haluros añadidos intencionadamente. La clasificación IPC permite hasta 500ppm de halógenos para la clasificación más baja 'L0'. Los flux para soldadura, las pastas de soldadura y los alambres de soldadura de esta clase suelen denominarse 'libres de halógenos'. La química de soldadura absolutamente libre de halógenos va un paso más allá y no contiene este nivel 'permitido' de halógenos. Específicamente en combinación con aleaciones de soldadura sin plomo y en aplicaciones electrónicas sensibles, se ha informado de que estos bajos niveles de halógenos causan problemas de fiabilidad como, por ejemplo, corrientes de fuga demasiado altas. Los halógenos son elementos de la tabla periódica como el Cl, el Br, el F y el I. Tienen la propiedad física de que les gusta reaccionar. Esto es muy interesante desde el punto de vista de la química de la soldadura porque su función es limpiar los óxidos de las superficies a soldar. Y efectivamente los halógenos realizan muy bien ese trabajo, incluso superficies difíciles de limpiar como el latón, Zn, Ni,...o superficies muy oxidadas o degradadas de I-Sn y OSP (Protección Orgánica de Superficies) pueden soldarse con la ayuda de flux halogenados. Los halógenos proporcionan una gran ventana de proceso en la soldabilidad. Sin embargo, el problema es que los residuos y productos de reacción de los flux halogenados pueden ser problemáticos para los circuitos electrónicos. Suelen tener una alta higroscopicidad y una elevada solubilidad en agua y suponen un mayor riesgo de electromigración y de altas corrientes de fuga. Esto supone un alto riesgo de mal funcionamiento del circuito electrónico. Específicamente con las aleaciones de soldadura sin plomo hay más informes de que incluso los niveles más pequeños de halógenos pueden ser problemáticos para las aplicaciones electrónicas sensibles. Las aplicaciones electrónicas sensibles suelen ser circuitos de alta resistencia, circuitos de medición, circuitos de alta frecuencia, sensores,... Por eso la tendencia es alejarse de los halógenos en la química de la soldadura en la fabricación de productos electrónicos. En general, cuando la soldabilidad de las superficies a soldar del componente y de la placa de circuito impreso (PCB) son normales, no hay necesidad de estos halógenos. Los productos de soldadura absolutamente libres de halógenos diseñados de forma inteligente proporcionarán una ventana de proceso lo suficientemente amplia como para limpiar las superficies y obtener un buen resultado de soldadura y esto en combinación con residuos de alta fiabilidad.

  • La colofonia, también llamada colofonia, es una sustancia derivada de los árboles que suele utilizarse en los flux para soldadura. Puede utilizarse tanto en flux líquidos como en flux en gel. Los flux que contienen colofonia pueden identificarse por la denominación "RO" en la clasificación IPC. En general, la colofonia proporciona una buena ventana de proceso en tiempo y temperatura, pero tiene una serie de desventajas dependiendo de la aplicación en la que se utilice el flux que contiene colofonia. En los flux líquidos para soldadura por ola y selectiva, la colofonia supondrá un mayor riesgo de bloqueo de la boquilla de los sistemas de aplicación de flux por pulverización y micro chorro, lo que se traducirá en un mayor mantenimiento y riesgo de malos resultados de soldadura. Los residuos de un flux con base de colofonia (=colofonia) en la máquina de soldar y en las herramientas y soportes son bastante difíciles de eliminar y normalmente se necesita un limpiador con base de disolvente. Cuando el flux con colofonia acaba accidentalmente en los contactos de un conector o en estructuras de peine de contacto como las de un mando a distancia o en contactores / relés / interruptores electromecánicos, se sabe que da problemas de contacto y mal funcionamiento de la unidad electrónica sobre el terreno. Además los residuos del flux que quedan en la placa pueden dar problemas de contacto con las pruebas eléctricas de pines ( ICT= In Circuit Testing) lo que puede dar lugar a retrasos en la producción por falsos errores. Esto suele requerir la limpieza de la placa de circuito impreso y/o de las clavijas de prueba. Estas caras clavijas de prueba son bastante frágiles y sensibles a ser dañadas por la limpieza. Además, se sabe que los residuos de un flux de colofonia no son compatibles con los revestimientos conformados en el tiempo. El residuo de colofonia forma una capa de separación entre la placa de circuito impreso y el revestimiento de conformación que con el tiempo puede provocar el desprendimiento del revestimiento de conformación y también grietas, especialmente cuando la unidad electrónica experimenta muchos ciclos de temperatura (calentamiento y enfriamiento). Por estas razones, los flux sin colofonia y, más concretamente, los flux de la clasificación "OR" se utilizan generalmente para la soldadura por ola y selectiva. La colofonia también puede utilizarse en los hilos de soldadura. Aunque la colofonia proporciona una buena ventana de proceso en tiempo y temperatura, es muy sensible a la decoloración cuando se calienta. La decoloración dependerá del tipo de colofonia y de la temperatura que haya visto. Como las temperaturas de las puntas de soldadura suelen ser bastante elevadas, la colofonia en el hilo de soldadura dará lugar a la formación de residuos visuales bastante pesados alrededor de las juntas de soldadura. Esto las distinguirá de las demás juntas de soldadura realizadas en reflujo, ola y soldadura selectiva. Cuando esto no es deseable, es necesario realizar una operación de limpieza. Además, los humos de una colofonia que contiene hilo de soldadura se consideran peligrosos. Una extracción de humos es obligatoria, pero, en cualquier caso, aconsejable para cualquier operación de soldadura manual. Los alambres que contienen colofonia se siguen utilizando bastante, pero los alambres de soldadura sin colofonia y, más concretamente, los alambres de soldadura de la clasificación "RE" están ganando importancia. La colofonia también se utiliza en las pastas de soldadura. Además de proporcionar una buena ventana de proceso en tiempo y temperatura, también proporciona una buena estabilidad de la pasta de soldadura sobre el esténcil. Esto facilitará un proceso de impresión estable y, por tanto, unos resultados de soldadura y unos índices de defectos estables. La decoloración de la colofonia en la soldadura por reflujo no es tan prominente como en el caso del hilo de soldadura porque las temperaturas en la soldadura por reflujo son más bajas que en la soldadura manual. Aun así, el residuo de colofonia tiene poca compatibilidad con el revestimiento de conformación y con el tiempo, tras los ciclos térmicos, podría mostrar grietas o desprendimiento del revestimiento de conformación. Aunque la mayoría de los fabricantes aplican el revestimiento de conformación sobre los restos de pasta de soldadura, para obtener resultados óptimos es aconsejable limpiar los restos de pasta de soldadura. Dadas las ventajas de la colofonia descritas anteriormente, la mayoría de las pastas de soldadura contienen colofonia.

  • COV son las siglas de Compuestos Orgánicos Volátiles, VOC en inglés. En general, los COV se consideran no respetuosos con el medio ambiente. Algunos países o regiones restringen las emisiones de COV mediante la legislación. Los alcoholes son COV. En algunos casos, el uso de decapantes de soldadura a base de alcohol en el proceso de soldadura por ola de una fabricación electrónica puede dar problemas con las restricciones de emisión de COV. Una solución sencilla en tal caso es utilizar un flux de soldadura sin COV. En general, se trata de un flux de base acuosa. Además de la eliminación de las emisiones de COV, los flux de base acuosa tienen más ventajas que los de base alcohólica, como un menor consumo, la ausencia de riesgo de incendio, la no necesidad de transporte y almacenamiento especiales, un menor olor en la zona de producción, ... Sin embargo, los flux de base acuosa en general son más sensibles a los ajustes correctos del pulverizador de flux para conseguir una buena aplicación del flux en la superficie y en los orificios pasantes. En algunos casos también pueden requerir un poco más de precalentamiento para conseguir la evaporación del agua.

  • En 2006 la legislación restringió el uso de plomo (Pb) en la fabricación de productos electrónicos. Sin embargo, se formularon muchas exenciones, principalmente debido a la falta de experiencia a largo plazo sobre la fiabilidad de las aleaciones sin plomo. Esto dio lugar a que muchos centros de fabricación de productos electrónicos utilizaran tanto aleaciones sin plomo como aleaciones con Pb en sus procesos de soldadura. Para la soldadura por ola y selectiva, muchos fabricantes de electrónica deseaban utilizar la misma química de flux con ambos tipos de aleaciones de soldadura. Esto se debía a que estaban familiarizados con la química en términos de fiabilidad. Además, introducir nuevos materiales en una fabricación puede requerir mucho papeleo, capacidad de almacenamiento extra, etc... Aunque las aleaciones sin plomo requieren temperaturas de funcionamiento más altas que las aleaciones que contienen Pb, aumentando la cantidad de flux aplicado en muchos casos se puede utilizar la misma química de flux para ambas aleaciones. Sin embargo, en algunos casos, normalmente cuando se sueldan unidades electrónicas con una masa térmica elevada, no es posible utilizar el mismo flux para ambas aleaciones de soldadura. En estos casos, suele ser necesario un flux con mayor contenido en sólidos. Existen muchos alambres y pastas de soldadura con el mismo flux tanto para aleaciones sin plomo como para aleaciones SnPb.

  • Cuando un producto de soldadura lleva la etiqueta No-Clean, significa que ha superado pruebas de fiabilidad como una prueba de resistencia al aislamiento superficial (SIR) o una prueba de migración electro(química). Estas pruebas están diseñadas para comprobar las propiedades higroscópicas de los residuos del producto de soldadura en condiciones de temperatura elevada y humedad relativa alta. No-Clean indica que los residuos pueden permanecer en la unidad electrónica tras el proceso de soldadura sin ser limpiados. Esto se aplicará con diferencia a la mayoría de las aplicaciones electrónicas. Para aplicaciones electrónicas muy sensibles, que suelen ser circuitos electrónicos de alta resistencia, circuitos electrónicos de alta frecuencia, etc... es posible que sea necesaria la limpieza de la unidad electrónica. Siempre es responsabilidad del fabricante electrónico juzgar si la limpieza es necesaria o no.

  • RoHS son las siglas en inglés de Restricción de Sustancias Peligrosas. Se trata de una directiva europea: Directiva 2002/95/CE. Restringe el uso de algunas sustancias que se consideran Sustancias Extremadamente Preocupantes (SHVC) en aparatos eléctricos y electrónicos para el territorio de la Unión Europea. A continuación encontrará un listado de estas sustancias: Tenga en cuenta que esta información está sujeta a cambios. Consulte siempre la página web de la Unión Europea para obtener la información más reciente: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1. Cadmio y compuestos de cadmio 2. Plomo y compuestos de plomo 3. Mercurio y compuestos de mercurio(Hg) 4. Compuestos de cromo hexavalente(Cr) 5. Bifenilos policlorados (PCB) 6. Naftalenos policlorados (PCN) 7. Parafinas cloradas (PC) 8. Otros compuestos orgánicos clorados 9. Bifenilos polibromados (PBB) 10. Difeniléteres polibromados (PBDE) 11. Otros compuestos orgánicos bromados 12. Compuestos orgánicos de estaño (compuestos de tributilestaño, compuestos de trifenilestaño) 13. Amianto 14. Compuestos azoicos 15. Formaldehído 16. Cloruro de polivinilo (PVC) y mezclas de PVC 17. Éster difenílico decabromado (a partir del 1/7/08) 18. PFOS : Directiva 76/769/CEE de la UE (no se permite en una concentración igual o superior al 0,0005% en masa) 19. Bis(2-etilhexil) ftalato (DEHP) 20. Butilbencilftalato (BBP) 21. Dibutilftalato (DBP) 22. Diisobutilftalato 23. Deca éster difenílico bromado (en equipos eléctricos y electrónicos) Otros países fuera de la Unión Europea han introducido su propia legislación RoHS, que en gran medida es muy similar a la europea.

Propiedades físicas y químicas

Conformidad
OR L0 según las normas EN e IPC
Contenido en sólidos
2,5% ±0,15
Contenido de haluros
0,00%

Documentos