µ-dIFe 7

Pasta de soldadura por inmersión

Interflux® µ-dIFe 7 es una pasta de soldar sin plomo y sin limpieza para aplicaciones por inmersión.

micro dIFe 7 µ- dIFe 7 SnAgCu type 5 30cc & 10cc & 5cc syringe with plunger 3

Adecuado para

  • El retrabajo y la reparación en una unidad electrónica pueden realizarse en unidades electrónicas defectuosas que vuelven del campo, pero también pueden ser necesarios en un entorno de producción electrónica para corregir defectos en los procesos de montaje y soldadura. Las acciones típicas de retrabajo y reparación implican la eliminación de puentes de soldadura, la adición de soldadura a componentes mal rellenos de agujeros pasantes o la adición de la soldadura que falta, la sustitución de componentes erróneos, la sustitución de componentes colocados en la dirección equivocada, la sustitución de componentes que presentan defectos relacionados con las altas temperaturas de soldadura en los procesos, la adición de componentes que se dejaron fuera del proceso debido, por ejemplo, a su disponibilidad o a su sensibilidad a la temperatura. La identificación de estos defectos puede realizarse mediante inspección visual, mediante AOI (inspección óptica automatizada), mediante ICT (pruebas en circuito, pruebas eléctricas) o mediante CAT (pruebas asistidas por ordenador, pruebas funcionales). Muchas operaciones de reparación pueden realizarse con una estación de soldadura manual que dispone de un (des)soldador con ajuste de temperatura. La soldadura se añade mediante un hilo de soldadura que está disponible en varias aleaciones y diámetros y que contiene un flux en su interior. En algunos casos se utiliza un flux líquido de reparación y/o un flux en gel para facilitar el proceso de soldadura manual. Para componentes de mayor tamaño, como BGA (Ball Grid Array), LGA (Land Grid Array) QFN (Quad Flat No Leads), QFP (Quad Flat Package), PLCC (Plastic Leaded Chip Carrier),... puede utilizarse una unidad de reparación que simula un perfil de reflujo. Estas unidades de reparación están disponibles en diferentes tamaños y con distintas opciones. En la mayoría de los casos contienen un precalentamiento por la parte inferior que suele ser IR (Infrarrojos). Este precalentamiento puede controlarse mediante un termopar que se coloca en la placa de circuito impreso. Algunas unidades disponen de una unidad pick and place que facilita la correcta colocación del componente en la placa de circuito impreso. La unidad de calentamiento suele ser de aire caliente o de infrarrojos, o una combinación de ambos. Con la ayuda de termopares en la PCB, el calentador se controla para crear el perfil de soldadura deseado. En algunos casos, el reto consiste en llevar el componente a las temperaturas de soldadura sin refundir los componentes adyacentes. Esto puede resultar difícil cuando el componente a reparar es grande y tiene componentes pequeños cerca. Para los BGA con bolas de una aleación de soldadura, se puede utilizar un flux en gel o un flux líquido con mayor contenido en sólidos. En este caso, la soldadura para la unión soldada la proporcionan las bolas. Pero también es posible el uso de una pasta de soldadura. La pasta de soldadura puede imprimirse en los conductores del componente o en la placa de circuito impreso. Esto requiere una plantilla diferente para cada componente. Los BGA también pueden sumergirse en una pasta de soldadura de inmersión especial que primero se imprime en una capa con una plantilla con una gran apertura y un grosor determinado. Para los QFN, LGA QFN, QFP, PLCC,... es necesario añadir soldadura para hacer una unión soldada. En algunos casos, los QFP pueden soldarse a mano, pero la técnica requiere experiencia, por lo que es preferible utilizar una unidad de retrabajo. Los QFP y PLCC tienen cables y pueden utilizarse con una pasta de soldadura por inmersión. Los QFN, LGA's QFN que no tienen cables sino contactos planos no pueden utilizarse con una pasta de soldar por inmersión porque sus cuerpos entrarían en contacto con la pasta de soldar. En este caso, la pasta de soldadura debe imprimirse en los contactos o en la placa de circuito impreso. En general, es más fácil imprimir la pasta de soldadura en el componente que en la placa de circuito impreso, sobre todo cuando se utiliza una plantilla denominada 3D que tiene una cavidad donde se fija la posición del componente. La sustitución de componentes con orificios pasantes puede realizarse con una estación de (des)soldadura manual. Suele hacerse colocando una punta desoldadora hueca sobre la parte inferior del cable del componente que puede succionar la soldadura del orificio. La punta desoldadora tendrá que calentar toda la soldadura del orificio pasante hasta que esté totalmente líquida. En el caso de placas térmicamente pesadas, esto puede resultar muy difícil. En este caso, también se puede calentar la parte superior de la junta de soldadura con un soldador. Otra posibilidad es precalentar la placa antes de la operación de desoldadura. La soldadura del componente con orificio pasante suele realizarse con un hilo de soldadura que contiene más flux o, alternativamente, se añade flux de repaso adicional en el orificio pasante y/o en el cable del componente. En el caso de conectores de orificio pasante más grandes, puede utilizarse un baño de soldadura por inmersión para extraer el conector. Si la accesibilidad en la placa de circuito impreso es limitada, puede utilizarse una boquilla de tamaño adaptado al conector. Se recomienda el uso de flux en esta operación.

  • La soldadura por reflujo es el proceso de soldadura más utilizado en el montaje de componentes electrónicos. Principalmente los componentes SMD (dispositivos de montaje superficial), pero también algunos componentes through hole, se sueldan en un horno de reflujo a una PCB (placa de circuito impreso) mediante una pasta de soldadura. El horno de reflujo suele ser un horno de convección forzada, pero también son posibles los hornos de fase de vapor e IR. El primer paso del proceso consiste en aplicar pasta de soldadura a las almohadillas de la placa de circuito impreso o, en caso de componentes con orificio pasante, en el orificio pasante. Esto último se denomina Pin in Paste (PiP) o tecnología de reflujo intrusivo. El principal método de aplicación es la impresión por esténcil, pero también son posibles la dispensación y el chorro de pasta de soldadura. Dependiendo del método de aplicación, la pasta de soldadura tendrá una consistencia diferente y se presenta en un envase distinto. La pasta de soldadura es una mezcla de polvo de soldadura y flux en gel. El tipo de flux en gel y el tipo de polvo, y en qué proporciones se mezclan, determinarán la consistencia de la pasta. El polvo de soldadura está hecho de una determinada aleación de soldadura y tiene un determinado tamaño de grano (distribución). Los tamaños de grano más finos se utilizan para componentes de paso más pequeño y aberturas de esténcil más pequeñas. La dosificación y aún más el chorreado también requieren tamaños de grano más finos. El gel flux contiene sustancias para desoxidar las superficies a soldar. También contiene sustancias que determinarán en gran medida la consistencia y el comportamiento de la pasta de soldadura en el proceso. Cuando se imprime pasta de soldadura por estarcido, un parámetro importante es que la pasta de soldadura mantenga sus propiedades de impresión durante el tiempo que vaya a estar sobre el estarcido. Esto suele denominarse la estabilidad de la pasta de soldadura. La estabilidad de la pasta de soldadura es difícil de cuantificar, pero puede estimarse a partir de la indicación de la vida útil del esténcil en la ficha técnica. Tras la aplicación de la pasta de soldadura, los componentes SMD se colocan sobre la pasta de soldadura con sus conexiones soldables. En la mayoría de los casos, esto se hace con una máquina Pick and Place. La pasta de soldadura debe tener suficiente fuerza de adherencia para mantener los componentes en su sitio hasta la soldadura. Una cinta transportadora llevará la placa de circuito impreso a través de un horno de reflujo en el que la placa de circuito impreso se somete a un perfil de soldadura por reflujo. Este perfil se crea mediante los ajustes de temperatura de las distintas zonas de convección. Suelen estar situadas tanto en la parte superior como en la inferior. Además de los ajustes de temperatura, en algunos casos también se puede programar la velocidad de convección de las zonas para conseguir una mejor o menor transferencia de calor, o cuando algunos componentes altos experimentan demasiada fuerza de la convección. El objetivo es conseguir que todos los componentes alcancen la temperatura de soldadura, que viene determinada por la aleación de soldadura utilizada, sin dañar o sobrecalentar los componentes sensibles a la temperatura. Esto puede suponer un reto en unidades con una gran diversidad de componentes grandes y pequeños o una distribución desigual del Cu en la placa de circuito impreso. Desde este punto de vista, una aleación de soldadura de bajo punto de fusión limita sustancialmente el riesgo de dañar o predañar los componentes y las placas de circuito impreso. La velocidad del transportador determinará el tiempo del perfil y el rendimiento del horno. En la mayoría de los casos, sin embargo, el proceso Pick and Place limita el rendimiento. No todos los componentes electrónicos son adecuados para la soldadura por reflujo. Algunos debido a su masa térmica como por ejemplo los grandes transformadores u otros debido a su sensibilidad térmica como por ejemplo algunos displays, conectores, relés, fusibles,... Estos componentes suelen estar disponibles como componentes pasantes y se sueldan en otros procesos como la soldadura selectiva, la soldadura por ola, la soldadura manual, la soldadura robotizada, la soldadura láser, ...

  • Soldadura sin plomo

Principales ventajas

  • Aplicación rápida y sencilla

  • Volumen de pasta repetible y selectivo

  • Reducción del riesgo de puentes en μ-BGAs

  • La estación ERSA Dip&Print forma parte de una estación de retrabajo para componentes electrónicos que son difíciles de reparar con una estación de (des)soldadura estándar. Por ejemplo, los componentes con terminación inferior (BTC), como los Ball Grid Arrays (BGA), QFN, DFN, LGA, ...pero también algunos circuitos integrados J-lead y de ala de gaviota como los QFP y PLCC son componentes que necesitan una estación de retrabajo especial. La estación ERSA Dip&Print está diseñada para aplicar pasta de soldadura o gel flux a esos componentes mediante impresión por esténcil o inmersión. El uso de productos químicos de soldadura específicamente diseñados para este proceso es obligatorio para obtener un buen resultado final. Para la inmersión, que puede utilizarse para componentes que tienen una separación entre el cuerpo del componente y los conductores soldables, se utiliza una pasta de soldadura de inmersión especial que proporcionará una cantidad repetible de soldadura en los conductores que se sumerjan en la pasta de inmersión. Para la impresión por esténcil se puede utilizar la misma pasta de soldadura que para el proceso SMT. Se puede utilizar un gel flux tanto para la impresión de esténciles como para la inmersión. Un gel flux sólo puede utilizarse cuando hay suficiente soldadura para hacer una unión soldada, como es el caso, por ejemplo, de los BGA.

  • Los circuitos integrados de rejilla (BGA), J-lead y los Gull Wing son componentes que, debido a su disposición física) resultan difíciles de retrabajar con una estación de (des)soldadura normal. En la mayoría de los casos, el retrabajo y la reparación se realizan con una estación de retrabajo que puede simular un perfil de reflujo. El uso de productos químicos de soldadura específicamente diseñados para este proceso es obligatorio para obtener un buen resultado final. Dependiendo del componente que se esté retrabajando y del paso del proceso, se puede dar preferencia a diferentes tipos de química de soldadura. A menudo se utiliza un gel flux debido a su gran ventana de proceso. Las diferentes viscosidades del gel flux admitirán diferentes métodos de aplicación, como la dosificación, la aplicación con brocha, la impresión de plantillas, la transferencia con agujas, la inmersión, ... Por otro lado, los flux líquidos de reparación permiten una aplicación muy precisa con un bolígrafo flux con punta de fibra de vidrio y darán una menor formación de residuos que los flux en gel. A veces se requiere un residuo bajo por razones estéticas, pero también cuando hay que aplicar un revestimiento conformado o para aplicaciones que pueden ser sensibles a los residuos como, por ejemplo, la electrónica de alta frecuencia. Un residuo bajo también facilitará el uso de un ERSA Scope que se utiliza para mirar debajo de un BGA después de la soldadura. Sin embargo, la ventana de proceso de los flux líquidos es menor que la de los flux en gel. Las pastas de soldadura también pueden utilizarse para el retrabajo y la reparación de BGAs, pero sin duda para los circuitos integrados J-lead y Gull Wing que necesitan la soldadura adicional para la unión soldada. Para la impresión por esténcil se puede utilizar la misma pasta de soldadura que para el proceso SMT. Para la inmersión, que puede utilizarse para componentes que tienen una separación entre el cuerpo del componente y los conductores soldables, se utiliza una pasta de soldadura de inmersión especial que proporcionará una cantidad repetible de soldadura en los conductores que se sumergen en la pasta de inmersión.

  • La química de soldadura absolutamente libre de halógenos no contiene halógenos ni haluros añadidos intencionadamente. La clasificación IPC permite hasta 500ppm de halógenos para la clasificación más baja 'L0'. Los flux para soldadura, las pastas de soldadura y los alambres de soldadura de esta clase suelen denominarse 'libres de halógenos'. La química de soldadura absolutamente libre de halógenos va un paso más allá y no contiene este nivel 'permitido' de halógenos. Específicamente en combinación con aleaciones de soldadura sin plomo y en aplicaciones electrónicas sensibles, se ha informado de que estos bajos niveles de halógenos causan problemas de fiabilidad como, por ejemplo, corrientes de fuga demasiado altas. Los halógenos son elementos de la tabla periódica como el Cl, el Br, el F y el I. Tienen la propiedad física de que les gusta reaccionar. Esto es muy interesante desde el punto de vista de la química de la soldadura porque su función es limpiar los óxidos de las superficies a soldar. Y efectivamente los halógenos realizan muy bien ese trabajo, incluso superficies difíciles de limpiar como el latón, Zn, Ni,...o superficies muy oxidadas o degradadas de I-Sn y OSP (Protección Orgánica de Superficies) pueden soldarse con la ayuda de flux halogenados. Los halógenos proporcionan una gran ventana de proceso en la soldabilidad. Sin embargo, el problema es que los residuos y productos de reacción de los flux halogenados pueden ser problemáticos para los circuitos electrónicos. Suelen tener una alta higroscopicidad y una elevada solubilidad en agua y suponen un mayor riesgo de electromigración y de altas corrientes de fuga. Esto supone un alto riesgo de mal funcionamiento del circuito electrónico. Específicamente con las aleaciones de soldadura sin plomo hay más informes de que incluso los niveles más pequeños de halógenos pueden ser problemáticos para las aplicaciones electrónicas sensibles. Las aplicaciones electrónicas sensibles suelen ser circuitos de alta resistencia, circuitos de medición, circuitos de alta frecuencia, sensores,... Por eso la tendencia es alejarse de los halógenos en la química de la soldadura en la fabricación de productos electrónicos. En general, cuando la soldabilidad de las superficies a soldar del componente y de la placa de circuito impreso (PCB) son normales, no hay necesidad de estos halógenos. Los productos de soldadura absolutamente libres de halógenos diseñados de forma inteligente proporcionarán una ventana de proceso lo suficientemente amplia como para limpiar las superficies y obtener un buen resultado de soldadura y esto en combinación con residuos de alta fiabilidad.

  • Las aleaciones sin plomo son aleaciones de soldadura sin Pb que se utilizan para conectar componentes electrónicos a placas de circuito impreso (PCB) en la fabricación de productos electrónicos. En 2006 la legislación restringió el uso del plomo (Pb) por el riesgo de que los productos electrónicos al final de su vida útil depositados en vertederos contaminaran las aguas subterráneas y el Pb se introdujera en el ecosistema. Cuando el cuerpo humano absorbe el Pb, es muy difícil eliminarlo y se sabe que causa todo tipo de problemas de salud (a largo plazo). En 2006, la legislación restringió el uso del plomo (Pb). Por ello, la industria se vio obligada a buscar alternativas sin Pb. Al final, la industria se estandarizó con aleaciones de soldadura basadas en Sn(Ag)Cu. Estas aleaciones ofrecían una utilizabilidad aceptable en los procesos de soldadura existentes, en combinación con una fiabilidad mecánica suficiente de las uniones soldadas y buenas propiedades térmicas y eléctricas. El principal inconveniente de las aleaciones de Sn(Ag)Cu son sus puntos de fusión (o rangos de fusión) bastante elevados, que dan lugar a temperaturas de funcionamiento bastante altas. Esto induce tensiones termomecánicas en la unidad electrónica en los procesos de soldadura que pueden provocar daños o predaños en algunos materiales y componentes de las placas de circuito impreso sensibles a la temperatura. Las temperaturas de soldadura típicas en la soldadura por ola son de 250-280°C, en la soldadura selectiva de 260-330°C y el picoT° medido en el reflujo de 235-250°C. La aleación más popular es la Sn96,5Ag3Cu0,5 con una temperatura de fusión en torno a los 217°C, a menudo denominada SAC305. Otras versiones son SnAg4Cu0,5, SnAg3,8Cu0,7, SnAg3,9Cu0,6,...Las diferencias en el punto de fusión entre estas aleaciones y las diferencias en términos de propiedades mecánicas, eléctricas y térmicas son para la mayoría de aplicaciones electrónicas y procesos de soldadura no significativas. Por razones de coste, la que tiene menor contenido en Ag es la preferida y ésa es la SAC 305. También por razones de coste, existe una tendencia hacia las aleaciones SnAgCu de bajo contenido en Ag como, por ejemplo, Sn99Ag0,3Cu0,7, Sn98,5Ag0,8Cu0,7,... a menudo denominadas aleaciones de bajo contenido en SAC. Estas aleaciones tienen un intervalo de fusión entre 217°-227°C. Esto, en la mayoría de los casos, requerirá temperaturas de trabajo más elevadas en los procesos de soldadura de hasta 10°C, lo que para algunos componentes sensibles a la temperatura puede ser significativo. Las propiedades mecánicas, eléctricas y térmicas de las aleaciones con bajo contenido en SAC difieren un poco más de las aleaciones SAC estándar. En general, tienen una menor resistencia a los ciclos térmicos (fatiga), pero para la mayoría de las aplicaciones electrónicas esto no es significativo. Sin embargo, la temperatura de trabajo 10°C más alta requerida suele ser un problema en la soldadura por reflujo porque la mayoría de las unidades electrónicas tendrán uno o más componentes sensibles a la temperatura. Además, en general las uniones soldadas SMD (Dispositivo de Montaje Superficial) son más débiles que las uniones soldadas a través de orificios y las aleaciones SAC en general tienen una resistencia al ciclo térmico bastante pobre, específicamente en uniones soldadas delgadas. Teniendo en cuenta todos estos parámetros, en la mayoría de los casos se optará por las aleaciones SAC estándar y no por las de bajo SAC para la soldadura por reflujo. Para la soldadura por ola la historia es un poco diferente. El baño de soldadura por ola con una aleación de soldadura sin plomo genera bastantes óxidos debido a su elevada temperatura de trabajo. Por eso muchos fabricantes optan por máquinas cerradas de nitrógeno. Sin embargo, esto requiere una inversión en infraestructura que no todos los fabricantes están dispuestos o pueden hacer. Los óxidos generados, en general, se vuelven a vender al fabricante de la aleación de soldadura donde se reciclan. El coste total para el fabricante de electrónica en este asunto es bastante elevado, sobre todo con las aleaciones de soldadura de alta Ag como la SAC305. Por eso se tiende a utilizar aleaciones con bajo contenido en SAC e incluso SnCu (sin Ag). También en este caso el punto de fusión más alto requerirá un aumento de la temperatura de funcionamiento para conseguir un relleno aceptable de los orificios pasantes. Como en la mayoría de los casos el calor se aplica desde la parte inferior y a los conductores de los componentes, los componentes sensibles a la temperatura situados en la parte superior de la placa en general no sufren demasiado por ello. En cuanto a la fiabilidad mecánica de la aleación baja en SAC y SnCu, es un problema menor porque las uniones soldadas a través de los orificios son, en general, mucho más resistentes que las uniones SMD. Cuando los componentes SMD (pegados) se sueldan por ola en la parte inferior de la placa de circuito impreso, esto puede ser diferente. También cuando hay que soldar aplicaciones térmicamente pesadas, los puntos de fusión más altos pueden dar problemas con un buen relleno de los orificios pasantes y se conocen casos en los que la temperatura de trabajo tuvo que elevarse tanto que el material de la placa de circuito impreso y algunos componentes de la cara superior resultaron dañados. En esos casos, una aleación de soldadura de bajo punto de fusión es una buena solución. Las aleaciones de bajo punto de fusión a base de SnBi nunca se consideraron una alternativa viable en el cambio de aleaciones con Pb a aleaciones sin Pb debido a su incompatibilidad con el Pb y en la fase de transición, en la que todavía muchos componentes y materiales de PCB contenían Pb, era imposible utilizarlas. Sin embargo, desde hace un par de años la industria está empezando a reconsiderar las aleaciones de bajo punto de fusión porque tienen muchas ventajas y el riesgo de contaminación por Pb se ha vuelto extremadamente bajo. Una aleación de bajo punto de fusión para soldadura como, por ejemplo, la LMPA-Q, requiere temperaturas de funcionamiento mucho más bajas que las aleaciones estándar para soldadura sin plomo. En la soldadura por reflujo requiere una T° pico de 190°C-210°C, en la soldadura por ola la temperatura del baño suele ser de 220°C-230°C y en la soldadura selectiva, la temperatura de trabajo suele ser de 240°C-250°C. Esto reduce sustancialmente el riesgo de dañar los componentes sensibles a la temperatura y los materiales de las placas de circuito impreso e incluso facilita el uso de componentes y materiales más baratos que son sensibles a la temperatura. En la soldadura por reflujo, la aleación de bajo punto de fusión también proporciona un menor vaciado en los BTC (Bottom Terminated Components). En general, las aleaciones de bajo punto de fusión tienen menos de un 10% de vaciado, mientras que las aleaciones SAC sin plomo suelen tener entre un 20 y un 30% de vaciado. En la soldadura por ola, la aleación de bajo punto de fusión permite velocidades de producción más rápidas de hasta el 70% y en la soldadura selectiva, donde la soldadura de conectores puede realizarse hasta 50 mm/s, el tiempo total del proceso puede reducirse a la mitad, aumentando la capacidad de la máquina en un 100%. Además, la aleación de bajo punto de fusión no tiene problemas con el buen relleno de agujeros pasantes en componentes térmicamente pesados. El uso de nitrógeno para la soldadura por ola y por reflujo es posible pero no necesario. Las propiedades térmicas, eléctricas y mecánicas de la aleación de bajo punto de fusión LMPA-Q son suficientes para la mayoría de las aplicaciones electrónicas. Dadas todas estas ventajas, muchos ven en las aleaciones de bajo punto de fusión el futuro de la fabricación electrónica.

  • Cuando un producto de soldadura lleva la etiqueta No-Clean, significa que ha superado pruebas de fiabilidad como una prueba de resistencia al aislamiento superficial (SIR) o una prueba de migración electro(química). Estas pruebas están diseñadas para comprobar las propiedades higroscópicas de los residuos del producto de soldadura en condiciones de temperatura elevada y humedad relativa alta. No-Clean indica que los residuos pueden permanecer en la unidad electrónica tras el proceso de soldadura sin ser limpiados. Esto se aplicará con diferencia a la mayoría de las aplicaciones electrónicas. Para aplicaciones electrónicas muy sensibles, que suelen ser circuitos electrónicos de alta resistencia, circuitos electrónicos de alta frecuencia, etc... es posible que sea necesaria la limpieza de la unidad electrónica. Siempre es responsabilidad del fabricante electrónico juzgar si la limpieza es necesaria o no.

  • RoHS son las siglas en inglés de Restricción de Sustancias Peligrosas. Se trata de una directiva europea: Directiva 2002/95/CE. Restringe el uso de algunas sustancias que se consideran Sustancias Extremadamente Preocupantes (SHVC) en aparatos eléctricos y electrónicos para el territorio de la Unión Europea. A continuación encontrará un listado de estas sustancias: Tenga en cuenta que esta información está sujeta a cambios. Consulte siempre la página web de la Unión Europea para obtener la información más reciente: https://ec.europa.eu/environment/topics/waste-and-recycling/rohs-directive_nl https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011L0065 1. Cadmio y compuestos de cadmio 2. Plomo y compuestos de plomo 3. Mercurio y compuestos de mercurio(Hg) 4. Compuestos de cromo hexavalente(Cr) 5. Bifenilos policlorados (PCB) 6. Naftalenos policlorados (PCN) 7. Parafinas cloradas (PC) 8. Otros compuestos orgánicos clorados 9. Bifenilos polibromados (PBB) 10. Difeniléteres polibromados (PBDE) 11. Otros compuestos orgánicos bromados 12. Compuestos orgánicos de estaño (compuestos de tributilestaño, compuestos de trifenilestaño) 13. Amianto 14. Compuestos azoicos 15. Formaldehído 16. Cloruro de polivinilo (PVC) y mezclas de PVC 17. Éster difenílico decabromado (a partir del 1/7/08) 18. PFOS : Directiva 76/769/CEE de la UE (no se permite en una concentración igual o superior al 0,0005% en masa) 19. Bis(2-etilhexil) ftalato (DEHP) 20. Butilbencilftalato (BBP) 21. Dibutilftalato (DBP) 22. Diisobutilftalato 23. Deca éster difenílico bromado (en equipos eléctricos y electrónicos) Otros países fuera de la Unión Europea han introducido su propia legislación RoHS, que en gran medida es muy similar a la europea.

Propiedades físicas y químicas

Conformidad
RO L0 según las normas EN e IPC
Contenido de haluros
0,00%

Documentos